|
References [1] M. A. Green, Jianhua Zhao, Aihua Wang, and Stuart R. Wenham, “ Very High Efficiency Silicon Solar Cell — Science and Technology”, IEEE Transactions on Electron Devices, Vol. 46, No. 10, October 1999. [2] M. A. Green, Silicon Solar Cells: Advanced Principles and Practice. Sydney, Australia: Bridge Printery, 1995. [3] M. Riordan and L. Hoddeson, Crystal Fire: The Birth of The Information Age. New York: Norton, 1997. [4] J. Haynos, J. Allison, R. Arndt, and A. Meulenberg, “The comsat nonreflective silicon solar cell: A second generation improved cell” in Int. Conf. Photovolitac Power Generation, Hamburg, Germany, Sept. 1974, p487. [5] R. B. Godfrey and M. A. Green, “655 mV open circuit voltage, 17.6% efficient silicon MIS solar cell”, Appl. Phys. Lett., vol. 34, pp.790-793, 1979. [6] J. G. Fossum and E. L. Burgess, “High efficiency p+ n n+ back-surface-field silicon solar cell”, Appl. Phys. Lett., vol. 33, pp. 238-240, 1978. [7] R. A. Sinton, Y. Kwark, P. Gruenbaum, and R. M. Swanson, “ Silicon point contact concentrator solar cell”, Cof. Record, 18th IEEE Photovoltaic Specialists Conf., Las Vegas, p. 61, 1985. [8] A. W. Blackers, A. Wang, A. M. Miline, J. Zhao, and M. A. Green, “22.8% efficienct silicon solar cell”, Appl. Phys. Lett., vol. 55 p. 1363, 1989. [9] A. Wang, J. Zhao, and M. A. Green, “24% efficiency silicon solar cells”, Appl. Phys. Lett., vol. 57, no. 6, p. 602, 1990. [10] K. C. Lee and J. G. Hwu, “ 17.3% efficiency Metal-Oxide Semiconductor (MOS) sloar cells with liquid-phase-deposited silicon dioxide”, IEEE Electron Device Lett., vol 18, no. 11, pp. 565-567, 1997. [11] M. Y. Doghish and F. D. Ho, “A comprehensive analytical model for Metal-Insulator-Semiconductor MIS devices: A solar cell application”, IEEE Transactions on Electron Device, vol. 40, pp. 1446-1454, 1993. [12] 陳致豪, “ Application of anodization technique on MOS solar sell and ultra-thin gate oxide”, master degree thesis of EE department of NTU, 2001. [13] E. H. Nicollian and J. R. Brews, “MOS Physics and Technology.” Wiley, New York, 1982. [14] Mohamed Yehya Doghish and Fat Duen Ho, “A comprehensive Analytical Model for Metal-Insulator-Semiconductor Devices,” IEEE Trans. Electron Devices, vol. 39, no. 12, p.2771, 1992. [15] 蘇建良, “Observation on the Thermal-Induced Stress Effect and Uniformity Improvement of Rapid Thermal Ultra-thin Gate Oxide”, master degree thesis of EE department of NTU, 2001. [16] M. A. Green, “Resistivity dependence of silicon solar cell efficiency and its enhancement using a heavily doped back contact region”, IEEE Trans. Electron Devices, vol. ED-23, pp. 11-15, Jan. 1976. [17] A. W. Blackers and M. A. Green, “20% efficiency silicon solar cell”, Appl. Phys. Lett., vol. 48, pp. 215-217, 1986. [18] T. Saitoh, T. Uematsu, T. Kida, K. Matsukuma, and K. Morita, “Design and fabrication of 20% efficiency, medium-resistivity silicon solar cells”, in Conf. Rec. 19th IEEE Photovoltaic Specialists Conf., New Orleans, LA, 1987, pp. 1518-1519. [19] W. T. Callaghan, “Crystalline silicon photovoltaic arrays: A final summaty of the flat-plate solar array project”, in 7th E. C. Photovoltaic Sol. Energy Con., Sivilla, Spain, Oct. 1986, pp. 792-799. [20] R. A. Sinton, Y. Kwark, J. Y. Gan, and R. M. Swanson, “27.5% Si concentrator solar cells”, IEEE Electron Device Lett., vol. EDL-7, pp. 567, 1986. [21] E. Yablonovitch, T. Gmitter, R. M. Swanson, and Y. H. Kwark, “A 720 mV open circuit voltage, SiOx double heterostructure solar cell”, Appl. Phys. Lett., vol. 47, pp. 1211-1213, 1985. [22] R. R. King, R. A. Sinton, and R. M. Swanson, “Front and back surface fields for point-contact solar cells”, in Conf. Rec., 20th IEEE Photovoltaic Specialists Conf., Las Vegas, NV, Sept. 1988, pp. 538-544. [23] M. A. Green, “Limits on the open-circuit voltage and efficiency of silicon solar cells imposed by intrinsic Auger processes”, IEEE Trans. Electron Devices, vol. ED-31, pp. 671-678, 1984. [24] W. Shockley and H. J. Queisser, “Detailed balance limit of efficiency of p-n junction solar cells”, J. Appl. Phys., vol. 32, pp. 510-519, 1961. [25] T. Tiedje, E. Yablonovitch, G. D. Cody, and B. G. Brooks, “Limiting efficiency of silicon solar cells”, IEEE Trans. Electron Devices, vol. ED-31, pp. 711-716, 1984. [26] P. Cambell and M. A. Green, “The limiting efficiency of silicon solar cells under concentrated sunlight”, IEEE Trans. Electron Devices, vol. ED-33, pp. 234-239, 1986. [27] A. Wang, J. Zhao, A. Aberle, S. R. Wenham, and M. A. Green, “717 mV open circuit voltage silicon solar cells”, Appl. Phys. Lett., vol. 64, pp. 199-201, 1994. [28] M. A. Green, “ Limiting efficiency of bulk and thin-film silicon solar cells in the presence of surface recombination”, Progr, Photovolatics, to be published, 1999. [29] S. Kolodinski, J. H. Werner, T. Wittchen, and H. J. Queisser, “Quantum efficiencies exceeding unity due to impact ionization in silicon solar cells”, Appl. Phys. Lett., vol. 63, pp. 2405-2407, 1993. [30] P. Cambell and M. A. Green, “Light trapping properties of pyramidally textured surfaces”, J. Appl. Phys., vol. 62, pp. 243-249, 1987. [31] A. G. Aberle, T. Lauinger, and R. Hezel, “Remote PECVD silicon─A key technology for the crystalline silicon PV industry of the 21st centry?”, in conf. Proc., 14th Europ. Photovotaic Sol. Energy Conf., Barcelon, Spain, 1997, pp. 684-689. [32] T. Sawada, N. Terada, S. Tsuge, T. Bata, T. Takahama, S. Tsuda, and S. Naknano, “High efficiency a-Si/c-Si heterojunction solar cell”, in Conf. Rec., 1st World Conf. Photovoltaic Energy Conservation, 1994, pp. 1219-1225. [33] Data sheet, BP Saturn Solar Cells, 1991. [34] “ Alternative energy engineering: 1997-98 design guide and catalog”, Alternative Eng., Inc., Redway, CA, 1997. [35] M. Camani, N. Cereghetti, D. Chianese, and S. Rezzonico, “Test of reliability on crystalline and amorphous silicon modules”, in Proc. 14th EC PV Sol. Energy Conf., Barcelona, Spain, June, 1997, p. 228. [36] T. M. Bruton, G. Luthardt, K. D. Rasch, K. Roy, I. A. Dorrity, B. Garrard, L. Teale, J. Alonso, U. Ugalde, K. Declerq, J, Nijs, J. Szlufcik, A. Rauber, W. Wettling, and A. Vallera, “A study of the manufacture at 500 MWp p. a. of crystalline silicon photovoltaic modules”, in Conf. Rec. 14th Europ. Photovoltaic Sol. Energy Conf.”, Barcelona, Spain, June/July, 1997, pp. 11-16. [37] D. H. Ford, J. A. Rand, A. M. Barnett, E. J. Delledonne, A. E. Ingram, and R. B. Hall, “Development of light-trapped, interconnected, silicon-film modules”, in Conf. Rec., 26th Photovoltaic Specialists Conf., Anaheim, CA, Sep./Oct., 1997, pp. 631-634. [38] T. Bab, M. Shima, T. Matsuyama, S. Tsuge, K. Wakisaka, and S. Tsuda, “9.2% efficiency thin-film polycrystalline silicon solar cell by a novel solid phase crystallization method”, in Conf. Rec., 13th Europ. Photovoltaic Solar Energy Conf. Exhibit., Nice, France, Oct. 1995, p 1708. [39] K. Yamamoto, T. Suzuki, M. Yoshimi, Y. Okamoto, Y. Tawada, and A. Nakajima, in 7th Workshop Role of Impurities and Defects in Silicon Device Processing, Vail, Aug., 1997, pp. 120-126. [40] J. Meier, P. Torres, R. Platz, S. Dubail, U. Kroll, J. A. Anna Selvan, N. Pellaton Vaucher, C. Hot, D. Fischer, H. Keppner, A. Shah, and K. D. Ufert, ”Amorphous silicon technology”, in Mater. Res. Soc. Symp. Proc., vol. 420, pp. 3-14, 1996. [41] M. A. Green and S. R. Wenham, “Novel parallel multijunction solar cell”, Appl. Phys. Lett., vol. 65, pp. 2907-2909, 1994.
|