(3.231.29.122) 您好!臺灣時間:2021/02/26 00:47
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:張權德
研究生(外文):Chuan-Te Chang
論文名稱:用以改善動態特性之靜態同步補償器與整合型電力潮流控制器之設計
論文名稱(外文):Design of Static Synchronous Compensators and Unified Power Flow Controllers for Power System Dynamic Performance Enhancement
指導教授:許源浴許源浴引用關係
指導教授(外文):Yuan-Yih Hsu
學位類別:博士
校院名稱:國立臺灣大學
系所名稱:電機工程學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:115
中文關鍵詞:靜態同步補償器整合型電力潮流控制器動態穩定度彈性交流輸電系統
外文關鍵詞:Static Synchronous CompensatorUnified Power Flow ControllerDynamic stabilityFlexible AC Transmission System
相關次數:
  • 被引用被引用:11
  • 點閱點閱:314
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:71
  • 收藏至我的研究室書目清單書目收藏:0
本論文之主要目的在探討利用以電力電子為基礎之彈性交流輸電系統補償裝置控制輸電線電力潮流、避免其他線路超載及增進電力系統動態穩定度。首先依據目前現況分析台電系統未來幾年內將面臨的輸電瓶頸問題,主要為第一、第二輸電迴路電力潮流分配不平均以及峨眉變電所匯流排電壓過低及潛在低頻振盪問題。本論文分別以系統性的方法依序設計靜態同步補償器系統與整合型電力潮流控制器系統,其中靜態同步補償器是用以解決峨眉匯流排電壓過低之問題,而整合型電力潮流控制同時結合了提升峨眉匯流排電壓與調整電力潮流以提升輸電效能之功能,為抑制系統低頻振盪,本文同時設計一個整合型電力潮流控制器之輔助阻尼控制器用以增加系統阻尼。本文並提出利用電力系統監視與調整器(PSS&C)以決定整合型電力潮流控制器適當的串聯電力潮流參考值及匯流排電壓參考值。最後希望在各種運轉條件下本論文所設計之系統均能維持不錯的動態特性。因此以類神經網路調變靜態同步補償器與整合型電力潮流控制器輔助阻尼控制器參數,由模擬結果可知此自調式系統可在寬廣的工作範圍內提供良好的動態特性。
The purpose of this dissertation is to study the application of the power electronic-based Flexible AC Transmission System (FACTS) to increase the transmission capability of existing transmission lines and to enhance the dynamic stability of power systems. In daily operation of Taiwan power system, potential problems on low bus voltages, line overloads, and low frequency oscillations have been of great concern to system operators as a result of heavy power flows over the 345 kV transmission lines connecting the northern area and the central and southern areas. In this dissertation, applications of static synchronous compensators (STATCOMs) to improve the dynamic voltage response on the transmission network of Taiwan power system is first examined. Then, unified power flow controllers (UPFCs) will be used to redistribute the power flows over two disproportionate parallel corridors and to boost the low voltage profile on the transmission networks. Moreover, a supplementary damping controller is designed to improve the damping for low frequency electromechanical mode oscillations. In addition, a Power System Supervisor and Conditioner (PSS&C) is proposed to determine proper reference bus voltages and series power flows for the UPFC control system. To maintain good dynamic responses over a wide range of loading conditions, the proportional-integral (PI) controller gains of the STATCOM controller and the UPFC supplementary damping controller are adapted in real time, based on online measured local loadings or transmission line loadings. To speed up the online gain adaptation process, an artificial neural network that is capable of performing complicated computations in a parallel, distributed manner is designed. The proposed adaptive controllers only need physically measurable variables (local real and reactive loads or line real and reactive loads) as the inputs to the STATCOM controller or UPFC supplementary damping controller. Simulation results show that the proposed adaptive controllers can yield satisfactory dynamic responses over a wide range of loading conditions.
中文摘要..................................................I
ABSTRACT.................................................II
目錄....................................................III
圖目錄..................................................VII
表目錄....................................................X
符號表...................................................XI
第一章 緒 論.............................................1
1-1 研究背景..............................................1
1-2 文獻回顧..............................................5
1-3 研究動機與目的.......................................10
1-4 論文內容概述.........................................13
第二章 整合型電力潮流控制器之特性與模型分析..............15
2-1 靜態同步補償器(STATCOM)............................15
2-1-1基本工作原理........................................15
2-1-2 數學模型...........................................17
2-1-3 控制模式...........................................18
2-2 靜態同步串聯補償器(SSSC)...........................22
2-2-1基本工作原理........................................22
2-2-2 數學模型...........................................24
2-2-3 控制模式...........................................25
2-3 整合型電力潮流控制器(UPFC)..........................28
2-3-1基本工作原理........................................29
2-3-2 數學模型...........................................30
2-3-3 控制模式...........................................34
第三章 以類神經網路調變之STATCOM控制器...................37
3-1 前言.................................................37
3-2 系統模型.............................................39
3-3 固定增益控制器 .......................................45
3-4 自調式類神經網路控制器...............................48
3-5 模擬結果與討論.......................................51
3-6 本章結論.............................................58
第四章 應用UPFC於長條型電力系統..........................59
4-1 前言.................................................59
4-2 系統描述.............................................60
4-3 穩態補償-電力潮流重新分配與匯流排電壓改善............61
4-4 UPFC系統簡介.........................................65
4-5 UPFC穩態補償特性與PSS&C ..............................66
4-5-1電力系統監視與調整器(Power System Supervisor and Conditioner, PSS&C).....................................66
4-5-2 補償系統穩態特性...................................68
4-6 UPFC控制系統.........................................69
4-6-1 電力系統動態模型...................................69
4-6-2 UPFC動態模型 .......................................70
4-7 UPFC控制系統設計.....................................74
4-7-1 UPFC串聯變流器控制器設計...........................77
4-7-2 UPFC並聯變流器控制器設計...........................77
4-7-3 UPFC輔助阻尼控制器設計.............................79
4-8 時域動態模擬結果.....................................79
4-8-1 暫時性故障事故.....................................80
4-8-2 永久性故障事故.....................................83
4-8-3 低頻機電模式振盪...................................84
4-9 本章結論.............................................86
第五章 以類神經網路調變之UPFC輔助阻尼控制器..............91
5-1 前言.................................................91
5-2 系統模型.............................................92
5-3 固定增益控制器設計...................................96
5-4 以類神經網路調變的控制器設計.........................98
5-5 模擬結果與討論.......................................99
5-6 本章結論............................................105
第六章 結 論...........................................106
6-1 本文之主要貢獻 ......................................106
6-2 未來之研究方向 ......................................108
參考文獻................................................109
著 作..................................................115
[1]P. M. Anderson and A. A. Fouad, Power System Control and Stability, Iowa State University Press, 1977.
[2]P. Kundur, Power System Stability and Control, McGraw Hill, 1994.
[3]F. P. de Mello and C. Concordia, “Concepts of synchronous machine stability as affected by excitation control,” IEEE Trans. on Power Apparatus and Systems, vol. 88, no. 4, pp. 316-329, 1969.
[4]M. Kelin, G. J. Rogers, and P. Kundur, “A fundamental study of inter-area oscillations in power systems,” IEEE Trans. on Power Systems, vol. 6, no. 3, pp. 914-921, 1991.
[5]Y. Y. Hsu, S. W. Shyue, and C. C. Su, "Low frequency oscillation in longitudinal power system, “experience with dynamic stability of Taiwan power system,” IEEE Trans. on Power Systems, vol. 2, no 1, pp. 92-100, 1987.
[6]C. L. Chang, A. S. Liu, and Y. T. Chen, “Dynamic performance monitoring system of Taiwan power system,” IEEE Trans. on Power Systems, vol. 8, no. 3, pp. 815-822, 1993.
[7]C. L. Chang, C. S. Liu, and C. K. Ko, “Experience with power system stability in a longitudinal power system,” IEEE Trans. on Power Systems, vol. 10, no. 1, pp. 539-545, 1995.
[8]Y. Y. Hsu et al. “Applications of series compensations and stabilizers techniques to improve the dynamic characteristics of Taiwan power system.” Research Report of Taiwan Power Company, 1997.
[9]T. J. E. Miller, Reactive Power Control in Electric Systems, New York, John Wiley & Sons, 1982.
[10]K. Bergmann, B. G. Friedrich, K. Stump, and W. H. Elliott, “Digital simulation, transient network analyzer and field tests of the closed loop control of the Eddy County SVC,” IEEE Trans. on Power Delivery, vol. 8, no. 4, pp. 1867-1873, 1993.
[11]C. Schauder and H. Mehta, “Vector analysis and control of advanced static var compensators,” IEE Proceedings-C, vol. 140, no. 4, pp.299-306, 1993.
[12]C. Schauder and H. Mehta, “Development of ±100 MVAR static condenser for voltage control of transmission systems,” IEEE Trans. on Power Delivery, vol. 10, no. 3, pp. 1486-1493, 1995.
[13]L. Gyugyi, “Reactive power generation and control by thyristor circuits,” IEEE Trans. on Industry Applications, vol. IA-15, no. 5, pp. 521-532, 1979.
[14]Y. Sumi, Y. Harumoto, T. Hasegawa, M. Yano, K. Ikeda, and T. Matsuura, “New static var control using forced-commutated inverters,” IEEE Trans. on Power Apparatus and Systems, vol. PAS-100, no. 9, pp. 4216-4224, 1981.
[15]C. W. Edwards, K. E. Mattern, E. J. Stacey, P. R. Nannery, and J. Gubernick, “Advanced static var generator employing GTO thyristors,” IEEE Trans. on Power Delivery, vol. 3, no. 4, pp.1622-1627, 1988.
[16]S. Mori, K. Matsuno, T. Hasegawa, S. Ohnishi, M. Takeda, M. Seto, S. Murakami, and F. Ishiguro, “Development of a large static VAR generator using self-commutated inverters for improving power systems stability,” IEEE Trans. on Power Systems, vol. 8, no. 1, pp. 371-377, 1993.
[17]C. Schauder, E. Stacey, M. Lund, L. Gyugyi, L. Kovalsky, A. Keri, A.Mehraban, and A. Edris, “AEP upfc project: installation, commissioning and operation of the ±160MVA statcon (phase I),” IEEE Trans. on Power Delivery, vol. 13, no. 4, pp. 1530-1535, 1997.
[18]P.M. Anderson and R.G., Farmer, Series compensation of power systems, (PBLSH! Inc., California, 1996)
[19]E. V. Larsen, K. Clark, S. A. Miske, and J. Urbanek, “Characteristics and rating considerations of thyristor controlled series compensation,” IEEE Trans. on Power Delivery, vol. 9, no. 2, pp. 992-1000, 1994.
[20]Y. Y. Hsu and T. S. Luor, “Damping of power system oscillations using adaptive thyristor-controlled series compensators tuned by artificial neural networks,” IEE Proceedings — Generation, Transmission, and Distribution, vol. 146, no. 2, pp. 137-142, 1999
[21]T. S. Luor, “Application of thyristor-controlled series compensators to enhance dynamic stability of power systems,” Doctor Dissertation, Department of Electrical Engineering, National Taiwan University, 1998.
[22]L. Gyugyi, C. D. Schauder, and K. K. Sen, “Static synchronous series compensator: a solid-state approach to the series compensation of transmission lines,” IEEE Trans. on Power Delivery, vol. 12, no. 1, pp. 406-413, 1997.
[23]L. Gyugyi, “Unified power flow controller concept for flexible ac transmission systems,” IEE Proceedings - C, vol. 139, no. 4, pp. 323-331, 1992.
[24]L. Gyugyi, C. D. Schauder, S. L. Williams, T. R. Rietman, D. R. Torgerson, and A. Edris, “The unified power flow controller: a new approach to power transmission control,” IEEE Trans. on Power Delivery, vol. 10, no. 2, pp. 1085-1097, 1995.
[25]L. Gyugyi, “Dynamic compensation of ac transmission lines by solid-state synchronous voltage sources,” IEEE Trans. on Power Delivery, vol. 9, no. 2, pp. 904-911, 1994.
[26]C. D. Schauder, L. Gyugyi, M. R. Lund, D. M. Hamai, T. R. Rietman, D. R. Torgerson, and A. Edris, “Operation of the unified power flow controller (upfc) under practical constraints,” IEEE Trans. on Power Delivery, vol. 13, no. 2, pp. 630-639, 1998.
[27]B. A. Renz, A. Keri, A. S. Mehraban, C. D. Schauder, E. Stacey, L. Kovalsky, L. Gyugyi, and A. Edris, “AEP unified power flow controller performance,” IEEE Trans. Power on Delivery, vol. 14, no. 4, pp. 1374-1381, 1999.
[28]A. Nabavi-Niaki and M. R. Iravani, “Steady-state and dynamic models of unified power flow controller (upfc) for power system studies,” IEEE Trans. on Power Systems, vol. 11, no. 4, pp. 1937-1943, 1996.
[29]I. Papic, P. Zunko, D. Povh, and M. Weinhold, “Basic control of the unified power flow controller,” IEEE Trans. on Power Systems, vol. 12, no. 4, pp. 1734-1739, 1997.
[30]K. R. Padiyar and A. M. Kulkarni, “Control design and simulation of the unified power flow controller,” IEEE Trans. on Power Delivery, vol. 13, no. 4, pp. 1348-1354, 1998.
[31]Y. Morioka, M. Kato, Y. Mishima, and Y. Nakachi, “Implementation of unified power flow controller and verification for transmission capability Improvement,” IEEE Trans. on Power Systems, vol. 14, no. 2, pp. 575-581, 1999.
[32]H. F. Wang, “Damping function of unified power flow controller,” IEE Proceedings-Generation, Transmission, and Distribution, vol. 146, no. 1, pp. 81-87, 1999.
[33]G. Joos, L. Moran, and P. Ziogas, “Performance analysis of a pwm inverter var compensator,” IEEE Trans. on Power Electronics, vol. 6, no. 3, pp. 380-391, 1991.
[34]K. R. Padiyar and A. L. Devi, “Control and simulation of static condenser,” Proceedings of the 1994 Applied Power Electronics Conference and Exposition, pp.826-831, 94CH3364-7.
[35]K. R. Padiyar and A. M. Kulkarni, “Analysis and design of voltage control of static condenser,” Proceedings of the 1996 Power Electronic, Driver and Energy Systems for Industrial Growth Conference, pp.393-398, 96TH8111.
[36]P. Garcia-Gonzalez and A, Garcia-Cerrada, “Control system for a PWM-based STATCOM,” Proceedings of the 1999 Power Engineering Society Summer Meeting, pp.1140-1145, 99CH36364.
[37]P. W. Lehn and M. R. Iravani, “Experimental evaluation of statcom closed loop dynamics,” IEEE Trans. on Power Delivery, vol. 13, no. 4, pp. 1378-1384, 1998.
[38]Z. Yao, P. Kesimpar, V. Donescu, N. Lechevin, and V. Rajagopalan, “Nonlinear control for statcom based on differential algebra,” Proceedings of the 1998 Power Electronic Specialists Conference, pp. 329-334, 98CH36196.
[39]M. Mohaddes, A. M. Gole, and P. G. McLaren, “A neural network controlled optimal pulse-width modulated statcom,” IEEE Trans. on Power Delivery, vol. 14, no. 2, pp. 481-488, 1999.
[40]C. Li, Q. Jiang, Z. Wang, and D. Retzmann, “Design of rule-based controller for statcom,” Proceedings of the 1998 Industrial Electronics Society Annual Conference, pp.372-376, 98CH36200.
[41]Y. Y. Hsu and K. L. Lion, “Design of self-tuning pid power system stabilizer for synchronous generator,” IEEE Trans. on Energy Conversion, vol. 2, no.3, pp.343-348, 1987.
[42]C. H. Cheng and Y. Y. Hsu, “Damping of generator oscillations using an adaptive static var compensator,” IEEE Trans. On Power Systems, vol. 7, no. 2, pp. 718-725, 1992.
[43]Y. Y. Hsu and C. R. Chen, “Tuning of power system stabilizers using an artificial neural network,” IEEE Trans. on Energy Conversion, vol. 6, no. 4, pp. 612-619, 1991.
[44]Y. Y. Hsu and L. H. Jeng, “Analysis of torsional oscillations using an artificial neural network,” IEEE Trans. on Energy Conversion, vol. 7, no. 4, pp. 684-690, 1992.
[45]Y. Y. Hsu and L. H. Jeng, “Damping of subsynchronous oscillations using adaptive controllers tuned by artificial neural networks,” IEE Proceedings- Generation, Transmission, and Distribution, vol. 142, no. 4, pp. 415-422, 1995.
[46]J. M. Zurada, Introduction to Artificial Neural Systems, Wert Publishing Company, 1992.
[47]IEEE Standard 421.5, “IEEE recommended practice for excitation system models for power system stability studies,” 1992
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔