[1] Stokes, G. G., “On the Effect of Internal Friction of Fluid on the Motion of Pendulums,” Cambridge Phil. Trans., Vol. 9, pp. 8, 1851.
[2] Oseen, C. W., “Uber die Stokes’sche Formel und ubereine verwandte Aufgabe in der Hydrodynamik,” Ark. f. Math. Astron. och. Fys., Vol. 6, No. 29., 1910.
[3] Proudaman, I., and Pearson, J. R. A., ”Expansions at Small Reynolds Numbers for the Flow Past a Sphere and Circular Cylinder,” J. Fluid Mech., Vol. 2, pp. 237, 1957.
[4] Kassoy, D. R., Adamson, J. R., and Messiter, A. F., “Compressible Low Reynolds Number Flow around a Sphere,” The Physics of Fluids, Vol.9, No. 4, pp. 671, 1966.
[5] Hadamard, J., “Movement Permanent Lent D’une Sphere Liquid Visqueuse Dans un Liquid Visqueux,” C. R. Acad Sci. Paris Ser. A-B, Vol. 152, pp. 1735, 1911.
[6] Elzingam, E. R., and Banchero, J. T., ”Some Observations on the Mechanics of Drops in Liquid-Liquid Systems,“ AIChE J., Vol. 7, pp. 394, 1961.
[7] Chao, B. T., ”Motion of Spherical Gas Bubbles in a Viscous Liquid at Large Reynolds Number,” Physics of Fluids, Vol. 5, pp. 69, 1962.
[8] Hamielec, E. A., Hoffman, T. W., and Ross, L. L., “Numerical Solution of the Navier-Stokes Equation for Flow Past Sphere:Part 1. Viscous Flow Around Sphere with and without Radial Mass Efflux,” AIChE J., Vol. 13, No. 2, pp. 212, 1967.
[9] Ahmed, H. A., and Hamielec, A. E., ”A Theoretical and Experiment Investigation of the Effect on Internal Circulation on the Drag of Spherical Droplet Falling at Terminal Velocity in Liquid Media,” Ind. Eng. Chem. Fundam, Vol. 14, pp. 308, 1975.
[10] Hubbard, G. L., Denny, V. E., and Mills, A. F., “Droplet Evaporation;Effects of Transients and Variable Properties,” Int. J. Heat Mass Transfer, Vol. 18, pp. 1003, 1975.
[11] Buzzard, J. L., and Nedderman, R. M., ”The Drag Coefficients of Liquid Droplets Accelerating Through Air,” Chemical Engineering Science, Vol. 22, pp. 1577, 1967.
[12] Yuen, M. C., and Chen, L. W., ”On Drag of Evaporating Liquid Droplets,” Combustion Science and Technology , Vol. 14, pp. 147, 1976.
[13] Chuchottaworn, P., Fujinami, A., and Asano, K., ”Experimental study of Evaporation of Volatile Pendant Drop under High Mass Flux Condition,” J. Chem. Eng. of Japan, Vol. 17, No. 1, pp. 7, 1984.
[14] Hu, S., and Kintner, R. C., “The Fall of Single Liquid Drops Through Water,” AIChE J., Vol. 1, pp. 42, 1955.
[15] Basaran, O. A., Scott, T. C., Byers, C. H., “Drop Oscillations in Liquid-Liquid System,” AIChE J., Vol. 35, No. 8, pp. 1263, 1989.
[16] Srikrishna, M., Sivaji, K., and Narasimhamurty, G. S. R., “Mechanics of Liquid Drops in Air,” Chem. Eng. J., Vol. 24, pp. 27, 1982.
[17] Irvine, T. F., Gyves, Jr. T., and Smith, T., ”Drag Relationships for Liquid Droplets Settling in a Continous Liquid,” AIChE J., Vol. 39 , No. 1, pp. 37, 1993.
[18] Humphery, J. A. C., Hummel, R. L., and Smith, J. W., ”Note on the Mass Transfer Enhancement due to Circulation in Growing Drop,” Chem. Eng. Sci., Vol. 29, pp. 634, 1974.
[19] Johnson, G., and Marschall, E., “On the Temperature Jump in Liquid/Liquid Direct Contact Heat Exchangers,” Int. J. Multiphase Flow, Vol. 12, pp. 127, 1986.
[20] Mulholland, J. A., Srivastava, R. K., and Wendt, J. O. L., “Influence of Droplet Spacing on Drag Coefficient in Nonevaporating, Monodisperse Streams,” AIAA Journal, Vol. 26, No. 10, pp. 1231, 1988.
[21] Zhu, C., Liang, S. C., and Fan, L. S., “Particle Wake Effects on the Drag Force of an Interactive Particle,” International Journal of Multiphase Flow, Vol. 20, No. 1, pp. 117, 1994.
[22] Virepinte, J. F., Adam, O., Lavergne, G., and Biscos, Y., “Droplet Spacing on Drag Measurement and Burning Rate for Isothermal and Reacting Conditions,” Journal of Propulsion and Power, Vol. 15, No. 1, pp. 97, 1999.
[23] Law, C. K., “Recent Advances in Droplet Vaporization and Combustion,” Prog. Energy Combust. Sci., Vol. 8, pp. 171, 1982.
[24] Jacques, M., Rivero, M., and Fabre, J., ”Accelerated Flows Past a Rigid Sphere or a Spherical Bubble. Part 1. Steady Straining Flow,” J. Fluid Mech., Vol. 284, pp. 97, 1995.
[25] Beard, K. V., and Pruppacher, H. R., “A determination of the terminal velocity and drag of small water drops by means of a wind tunnel,” J Atmos Sci, Vol. 26, pp. 1066, 1969.
[26] Warnica, W. D., Renksizbulut, M., and Strong, A. B., “Drag Coefficients of Spherical Liquid Droplets Part 1: Quiescent Gaseous Fields,” Experiments in Fluids, Vol. 18, pp. 258, 1995.
[27] Biswal, L. D., Datta, and Som, S. K., “Transport Coefficients and Life History of a Vaporising Liquid Fuel Droplet Subject to Retardation in a Conventive Ambience,” International Journal of Heat and Fluid Flow, Vol. 20, pp. 68, 1999.
[28] Kline, S. J., and McClintock, F. A., “Describing Uncertainties in Single-Sample Experiments,” Mech. Eng., pp. 3, January 1953.
[29] 黃耀德, ”兩連續自由下落液滴之阻力分析與現象,”國立台灣大學機械工程學研究所碩士論文, 1999.[30] editor-in-chief, David, R. L., “CRC Handbook of chemistry and physics,” CRC Press, 2000-2001.
[31] executive editor, Reiner L., “Beilstein Handbook of Organic Chemistry,” New York:Springer, fourth edition. 1985.
[32] Sujith, R. I., Waldherr, G. A., Jagoda, J. I., and Zinn, B. T., ”On the Effect of Evaporation on Droplet Drag,” J. of Fluids Eng., Vol. 118, pp. 862, 1996.
[33] Le Clair, B. P, Hamielec, A. E., Pruppacher, H. R., and Hall, W. D., “A Theoretical and Experimental Study of the Internal Circulation in Water Drops Falling at Terminal Velocity in Air,” J. Atmos Sci, Vol. 29, pp. 728, 1972.
[34] Jog, M. A., Ayyaswamy, P. S., and Cohen, I. M., “Evaporation and Combustion of a Slowly Moving Liquid Fuel Droplet: Higher-Order Theory,” Journal of Fluid Mechanics, Vol. 307, pp. 135, 1996.
[35] Chisnell, R. F., “The Unsteady Motion of a Drop Moving Vertically Under Gravity,” J. Fluid Mech., Vol. 176, pp. 443, 1987.
[36] Munson, B. R., Young, D. F., and Okiishi, T. H., ”Fundamentals of Fluid Mechanics,” John Wiley & Sons, New York, 1994.
[37] Clift, R., Grace, J. R., and Weber, M. E., “Bubbles, Drops and Particles,” Academic, New York, 1978.
[38] White, F. M., ”Viscous Fluid Flow,” McGraw-Hill International Edition., 2nd edition, 1991.