1. S. Suresh, Fatigue Crack Growth, Class Notes, MIT, 2000.
2. 蕭飛賓(召集人),航空、太空工程技術研究發展規劃書,國科會工程處航空太空學門,民國八十八年十二月。(亦見於國科會連結成大航太所網頁。)
3. K. Ono,“Nondestructive Testing of Aging Aircraft,”Proceedings of Fourth Far East Conference on Nondestructive Testing, pp. 3-18, Cheju-Do, Korea, October, 1997.
4. C. C. Scher, etc., Session on Aging Aircraft, Proceedings of the Seventh International Fatigue Congress, Vol. IV, pp. 2499-2582, 1999.
5. P. C. Paris, and F. Erdogan, “A Critical Analysis of Propagation Laws,” Journal of Basic Engineering, Vol. 85, pp. 528-534, 1960.
6. W. Elber, “Fatigue Crack Closure Under Cyclic Tension,” Engineering Fracture Mechanics, Vol. 2, pp. 37-45, 1970.
7. W. Elber, “The Significance of Fatigue Crack Growth,” ASTM STP 486, American Society for Testing and Material, Philadelphia, pp. 230-241, 1971.
8. T. L. Anderson, Fracture Mechanics Fundamentals and Applications, CRC Press, 1991.
9. J. C. Newman Jr., “A Crack-Closure Model for Predicting Fatigue Crack Growth Under Aircraft Loading, Methods and Models for Predicting Fatigue Crack Growth Under Random Loading,” ASTM STP 748, pp. 53-84, 1981.
10. J. C. Newman Jr., “Prediction of Fatigue Crack Growth Under Variable-Amplitude and Spectrum Loading Using a Closure Model Design of Fatigue and Fracture Resistant Structures,” ASTM STP 761, pp. 255-277, 1982.
11. J. C. Newman Jr., “A Crack Opening Stress Equation For Fatigue Crack Growth,” International Journal of Fracture, Vol. 24, R131-R135, 1984.
12. G. S. Wang and A. F. Blom, “A Strip Model for Fatigue Crack Growth Predictions Under General Load Conditions,” Engineering Fracture Mechanics, Vol. 40, pp. 507-533, 1991.
13. A. Ray and R. Patankar, “Fatigue Crack Growth Under Variable-Amplitude Loading: Part I - Model Formulation in State- Space Setting,” Applied Mathematical Modelling, Vol. 25, pp. 979-994, 2001.
14. T. Lagoda, E. Macha and R. Pawliczek, “The Influence of the Mean Stress on Fatigue Life of 10HZAP Steel Under Random Loading,” International Journal of Fatigue, Vol. 23, pp. 283-291, 2001.
15. L. Tucker and S. Bussa, The SAE Cumulative Fatigue Damage Test Program, in Fatigue Under Complex Loading: Analysis and Experiments (edited by R. M. Wetzel), pp. 1-53, 1977.
16. J. B. De Jonge, D. Schutz, H. Lovak and J. Schijve, A Standardized Load Sequence for Flight Simulation Tests on Transport Aircraft Wing Structures, NLR TR 7309 U, 1973.
17. G. M. Van Dijk and J. B. De Jonge, Introduction to a Fighter Aircraft Loading Standard for Fatigue Evaluation, “FALSTAFF,” Part 1, NLR MP 75017 U, 1975.
18. A. A. Ten Have, HELIX and FELIX: Loading Standards for Use in Fatigue Evaluation of Helicopter Rotor Components, NLR MP 82041 U, 1982.
19. A. A. Ten Have, “European Approaches in Standard spectrum Development, Development of Fatigue Loading Spectra,” ASTM STP 1006, pp. 17-35, 1989.
20. J. Dominguez and J. Zapatero, “Effect of the Loading Spectrum and History Length on Fatigue Life Distribution Under Random Loading,” Engineering Fracture Mechanics, Vol. 42, pp. 925-933, 1992.
21. R. C. Linsley and B. M. Hillberry, “Random Fatigue of 2024-T3 Aluminum under Two Spectra with Identical Peak-Probability Density Functions,” Probabilistic Aspects of Fatigue, ASTM STP 511, pp. 156-167, 1972.
22. H. O. Fuchs and R. I. Stephens, Metal Fatigue in Engineering, John Wiley & Sons, New York, 1980.
23. J. A. Collins, Failure of Materials in Mechanical Design, John Wiley & Sons, New York, 1981.
24. N. E. Dowling, Mechanical Behavior of Materials - Engineering Methods for Deformation, Fracture and Fatigue, Prentice-Hall, Englewood Cliffs, New Jersey, 1993.
25. D. A. Virkler, B. M. Hillberry and P. K. Goel, “The statistic Nature of Fatigue Crack Propagation,” ASME Journal of Engineering Materials and Technology, Vol. 101, pp. 148-153, 1979.
26. J. N. Yang and S. D. Manning, “A Simple Second Order Approximation for Stochastic Crack Growth Analysis,” Engineering Fracture Mechanics, Vol. 53, pp. 677-686, 1996.
27. D. F. Ostergaard and B. M. Hillberry, “Characterization of the Variability Fatigue Crack Propagation Data,” in Probabilistic Fracture Mechanics and Fatigue Method: Application for Structural Design and Maintenance, ASTM STP798, J. M. Bloom and J. C. Ekvall, ASTM, pp. 97-115, 1983.
28. C. E. Bronn, “Analysis if Structural Failure Probability Under Spectrum Loading Conditions,” in Probabilistic Fracture Mechanics and Fatigue Method: Applications for Structural Design and Maintenance, ASTM STP798, J. M. Bloom and J. C. Ekvall, ASTM, pp. 161-183, 1983.
29. S. R. Varanasi and I. C. Whittaker, “Structural Reliability Prediction Method Considering Crack Growth and Residual Strength,” in Fatigue Crack Growth Under Spectrum Loads, ASTM STP 595, American Society for Testing and Materials, pp. 292-305, 1976.
30. S. A. Meguid, Engineering Fracture Mechanics, Elsevier Applied Science, 1989.
31. D. Broek, Elementary Engineering Fracture Mechanics, Fourth Edition, Martinus Nijhoff, Publishers.
32. M. Klesnil and P. Lukas, Fatigue of Metallic Materials, Elsevier Scientific Publishing, 1980.
33. J. N. Yang, W. H. Hsi and S. D. Manning, Stochastic Crack Propagation with Applications to Durability and Damage Tolerance Analyses, Flight Dynamic Laboratory, Technical Report, AFWAL-TR-85-3062, Wright-Patterson Air Force Base, Ohio, 1985.
34. J. N. Yang, W. H. Hsi and S. D. Manning, “Stochastic Crack Growth Models for Applications to Aircraft Structures,” Probability Fracture Mechanics and Reliability, Chapter 4, pp. 171-211, 1987.
35. M. S. Miller and J. P. Gallagher, “An Analysis of Several Fatigue Crack Growth Rate (FCGR) Description Fatigue Crack Growth Measurement and Data Analyses,” ASTM STP 738, pp. 205-251, 1981.
36. K. C. Kapur and L. R. Lamberson, Reliability in Engineering Design, New York, Wiley, 1977.
37. E. E. Charles, An Introduction to Reliability and Maintainability Engineering, McGraw-Hill, 1997.
38. L. J. Devore, Probability and Statistics for Engineering and the Sciences, Fifth Edition, Duxbury, 2000.
39. S. S. Rao, Reliability-Based Design, McGraw-Hill, 1992.
40. ASTM E647-91, Standard Test Method for Measurement of Fatigue Crack Growth Rates, American Society for Testing and Materials, Phiadelphia, 1991.
41. J. Dominguez, J. Zapatero and J. Pascual, “Effect of Load Histories on Scatter of Fatigue Crack Growth in Aluminum Alloy 2024-T351,” Engineering Fracture Mechanics, Vol. 56, pp. 65-76, 1997.
42. J. Dominguez, J. Zapatero and B. Moreno, “A Statistical Model for Fatigue Crack Growth under Random Loads Including Retardation Effects,” Engineering Fracture Mechanics, Vol. 62, pp. 351-369, 1999.
43. S. Ustilovsky and R. Arone, “Random Fatigue Crack Growth in Aluminum Alloys,” International Journal of Fatigue, Vol. 21, pp. 275-282, 1999.
44. S. Y. Lee and J. H. Song, “Crack Closure and Growth Behavior of Physically Short Fatigue Cracks Under Random Loading,” Engineering Fracture Mechanics, Vol. 66, pp. 321-346, 2000.
45. M. Shinozuka, “Digital Simulation of Random Processes and its Applications,” Journal of Sound and Vibration, Vol. 25(1), pp. 111-125, 1972.
46. M. Leonard, Fundamentals of Vibrations, McGraw-Hill, p. 685-718, 2001.
47. G. I. Schueller and M. Shinozuka, Stochastic Methods in Structural Dynamics, Martinus Nijhoff, 1987.
48. 蕭子健等,LabView 進階篇,高立圖書,民國八十七年。
49. 劉宏毅,金屬受隨機負載作用下之疲勞分析模式與探討,國立台灣大學機械工程學研究所博士論文,民國八十七年。50. J. Y. Mann, “ Scatter in Fatigue Life-A Materials Testing and Design Problem,” Materials, Experimentation and Design in Fatigue. (Edited by E. Sherratt and J. B. Sturgeon), West Bury House, pp. 390-423, 1981.
51. Y. K. Lin and J. N. Yang, “A Stochastic Theory of Fatigue Crack Propagation,” AIAA Journal, Vol. 23, pp. 117-124, 1985.
52. G. S. Wang, “A Probabilistic Damage Accumulation Solution Based on Crack Closure Model,” International Journal of Fatigue, Vol. 21, pp. 531-547, 1999.
53. T. Svensson, “Prediction Uncertainties at Variable Amplitude Fatigue,” International Journal of Fatigue, Vol. 19, pp. S295-S302, 1997.
54. P. C. Paris, “Fracture Mechanics and Fatigue: a Historical Perspective,” Fatigue and Fracture of Engineering Materials and Structures, Vol. 21, pp. 535-540, 1998.
55. I. Hiroshi, I. Tetsuo and P. Y. Huang, “Experimental Estimation of the Probability Distribution of Fatigue Crack Growth Lives,” Probabilistic Engineering Mechanics, Vol. 8, pp. 25-34, 1993.
56. F. Bergner and G. Zouhar, “A New Approach to the Correlation Between the Coefficient and the Exponent in the Power Law Equation of Fatigue Crack Growth,” International Journal of Fatigue, Vol. 22, pp. 229-239, 2000.
57. L. N. McCartney and P. E. Irving, “A Correlation for Fatigue Crack Growth Rate,” Scripta Metallurgica, Vol. 36(4), pp. 181-183, 1977.
58. J. P. Hickerson and R. W. Hertzberg, “The Role of Mechanical Properties in Low-Stress Fatigue Crack Propagation,” Metallurgical Transactions A, Vol. 3A, pp. 179-189, 1972.
59. H. Kitagawa, Journal Japanese Society Mechanical Engineers, Vol. 75, pp. 1068-1080, 1972.
60. M. B. Cortie, “The Irrepressible Relationship Between the Paris Law Parameters,” Engineering Fracture Mechanics, Vol. 40(3), pp. 681-682, 1991.
61. C. R. Krenn and J. W. Morris Jr., “The Compatibility of Crack Closure and Dependent Models of Fatigue Crack Growth,” International Journal of Fatigue, Vol. 21, S147-S155, 1999.
62. 陳志忠,鋁合金裂縫成長行為之可靠度研究,國立台灣大學機械工程學研究所碩士論文,民國九十年。63. 楊銘堯,符合實驗結果之金屬疲勞裂縫延伸電腦模擬,國立台灣大學機械工程學研究所碩士論文,民國九十年。