(3.231.29.122) 您好!臺灣時間:2021/02/25 16:11
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:文黃瑋
研究生(外文):HUANG-WEI WEN
論文名稱:台大機械系太陽能車之外型分析研究
論文名稱(外文):SHAPE ANAYSIS OF THE NTUME SOLAR RACING CAR
指導教授:顏瑞和
指導教授(外文):RUEY-HOR YEN
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:機械工程學研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:110
中文關鍵詞:太陽能車空氣動力學空氣阻力流場控制
外文關鍵詞:SOLAR CARAERODYNAMICSAERODRAGFLOW CONTROL
相關次數:
  • 被引用被引用:10
  • 點閱點閱:1231
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:136
  • 收藏至我的研究室書目清單書目收藏:2
摘要
本研究主要是運用數值模擬的方法分析設計台灣大學機械系於2000年所設計製造的太陽能車Formosun,並提供出設計車身阻力最佳化的方法與原則給下一部太陽能車的設計做參考。
本次研究中包含三部份:首先是目前車型的現狀,其次是局部外型修正後的結果,最後是外加流場控制後的情形。在第一部分算出目前車型的空氣阻力係數為0.2119;其次在局部外型修正結果上共討論五個部分:車頭的曲度設計、車頭的圓鼻設計、車尾的漸縮設計、車尾厚度的影響與車身正投影形狀設計,若將上述五項修改合併於一身,則總阻力係數下降至0.1439,下降幅度達32%;最後外加流場控制情形無論是在太陽能板表面作向下的吸氣,或是對座艙罩後方做氣體的吹入,對於阻力的下降幫助都不大。因此若是能在外型設計之初注意到上述五個部分,其低阻力的效果將比其他流場控制的效果更好。

Abstract
In this thesis, the aerodynamic drag on the shape of the solar racing car, Formosun, designed by the department of Mechanical Engineering, National Taiwan University was analyzed by numerical simulation of Navier-Stokes equations. The racing car is planned to attend the World Solar Challenge in 2003.
The purpose of this research is to modify the shape of the baselined car, which was designed in 2000, to reduce the drag. According to the concept of fluid mechanics, the shape of the head, nose, rear shape, tail thickness and frontal area are the parameters to be investigated. It shows that the drag coefficient can be reduced from 0.2119 to 0.1439. It is about 32% deduction.
Boundary layer control by injection and suction is also studied. Due to the streamline shape of the canopy and the separation size on the upper surface of the car, the drag reduction by injection and suction is minor.

目錄
² 誌謝 I
² 中文摘要 II
² 英文摘要 III
² 目錄 IV
² 圖目錄 VII
² 表目錄 X
第一章 緒論
1-1 研究背景 1
1-2 研究目的 2
1-3 文獻回顧 4
1-4 研究方法 7
第二章 理論模式與數值分析
2-1 基本假設 10
2-2 統御方程式 11
2-3 紊流模式 13
2-4 格點系統 15
2-5 數值計算方法 16
第三章 實例測試與軟體驗證
3-1 STAR-CD簡介 18
3-2 軟體驗證實例 19
3-3 紊流計算模式 21
3-4 太陽能車驗證 22
第四章 太陽能車的設計與改良
4-1 原始構想與基本車型設計 25
4-2 座艙罩外型修改 26
4-3 局部外型修改 28
4-4 結論 37
第五章 主動流場控制分析
5-1 太陽能板底下流體吸入控制 39
5-2 座艙罩後方氣體吹出控制 45
5-3 結論 51
第六章 結論與建議
6-1 結論建議 53
6-2 未來展望 55
² 參考文獻 57
² 附錄A-2001年競賽規則 61
² 附錄B-2000 Formosun 69
² 附錄C-2002 Formosun II 70

參考文獻
[1.] G. Tamai, The Leading Edge-Aerodynamic Design of Ultra- streamlined Land Vehicles, Bentley Publishers, 1999, pp. 1~128 & 184~208.
[2.] 李添財編著,汽車空氣動力學,全華,民國88年,第2-1~11與6-1~6-11頁。
[3.] W. H. Hucho and G. Sovran, “Aerodynamics of Road Vehicles”, Annu. Rev. Fluid Mech. v.25, 1993, pp. 485~537.
[4.] C. R. Kyle, Racing with the Sun: the 1990 World Solar Challenge, Society of Automotive Engineers, 1991, pp. 57~62.
[5.] B. Sturtevant, GM Sunraycer Case History, Society of Automotive Engineers, 1990.
[6.] T. Iwata and T. Takahashi, “Development of a Solar Powered Vehicle”, SAE 921543, Warrendale, PA, 1992, pp. 1255~1264.
[7.] H. Ozawa and S. Nishikawa and D. Higashida, “Development of Aerodynamics for a Solar Race Car”, JSAE9832285 Rev. v. 19 n 4, Oct 1998, pp. 343~349.
[8.] S. F. Hoerner, Fluid-dynamic Drag: Practical Information on Aerodynamic Drag and Hydrodynamic Resistance, Published by author, 1965.
[9.] I. H. Abbott and A. E. Doenhoff, Theory of Wing Sections, Dover Publications, Inc., 1959, pp. 47~123.
[10.] M. J. Cusack and J. G. Prehn and C. Mavriplis, “Aerodynamic design of the George Washington University Solar Car Sunforce 1”, International Journal of Vehicle Design v 18 n 2, 1997, pp. 213~232.
[11.] B. W. McCormick, Aerodynamics Aeronautics and Flight Mechanics, Wiley, 1979, pp.214~236.
[12.] I. G. Currie, Fundamental Mechanics of Fluids, McGraw-Hill, 1993, pp.138~179.
[13.] B. E. Launder and D. B. Spalding, “The Numerical Computation of Turbulent Flow”, Comp. Math. in application Mech. & Eng.
[14.] ICEMCFD v4.0 User Manual, ICEMCFD Engineering, 1996.
[15.] STAR-CD v3.1 User Guide, Computational Dynamics Limited, 1999.
[16.] J. Dreese, Super Numerical Airfoil Creation Kit User Manual, 2000.
[17.] F. M. White, Viscous Fluid Flow, McGraw-Hill, 1974, pp.93~95 & 173~178.
[18.] M. C. Potter and D. C. Wiggert, Mechanics of Fluids, Prentice Hall, 1997, pp. 333~342.
[19.] B. P. LeClair and A. E. Hamielec, “A Theoretical and Experimental Study of the Internal Circulation in Water Drops Falling at Intermediate Reynolds Numbers”, J. Atoms. Sci. v29 No. 2, 1972, pp. 728~740.
[20.] Z. G. Feng and E. E. Michaelides, “Drag Coefficients of Viscous Spheres at Intermediate and High Reynolds Number”, Journal of Fluids Engineering v. 123, December 2001, pp. 841~849.
[21.] Jr. E. R. Elzinga and J. T. Banchero, “Some Observations on the Mechanic of Drops in Liquid- Liquid System”, AICH J. v7 No.3, 1961, pp. 394~399.
[22.] A. G. Tomboulides, “Direct and Large-Eddy Simulation of Wake Flow: Flow Past a Sphere”, Doctor Dissertation, Department of Mechanical and Aerospace Engineering, Princeton University, 1993, pp. 89~104.
[23.] CFX 4.1 User Guide, AEA Technology, 1995.
[24.] F. P. Incropera and D. P. Dewitt, Introduction of Heat Transfer, Wiley, 1996, pp. 324~369 & 596~649.
[25.] G. V. Lachmann, Boundary Layer and Flow Control — Its Principles and Application, Pergamon press, 1961.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔