(3.238.7.202) 您好!臺灣時間:2021/03/04 03:07
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:林憲陽
研究生(外文):Hsien Yang Lin
論文名稱:壓電陶瓷複合層板動態特性之數值分析與實驗量測
論文名稱(外文):Numerical Analysis and Experimental Measurements on Dynamic Characteristics of Piezoelectric Laminated Composite Plates
指導教授:馬劍清
指導教授(外文):C.C.Ma
學位類別:博士
校院名稱:國立臺灣大學
系所名稱:機械工程學研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
中文關鍵詞:電子斑點干涉術壓電阻抗
外文關鍵詞:ESPIpiezoelectricimpedancevibration
相關次數:
  • 被引用被引用:30
  • 點閱點閱:360
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:87
  • 收藏至我的研究室書目清單書目收藏:0
關於壓電陶瓷材料振動特性的實驗探討,一般皆侷限於單層壓電體的分析,然而,為了提昇其競爭力及擴展壓電特性在工程上的應用,多層式或複合式的壓電結構是近年來主要發展趨勢。為了增進對這類型壓電結構振動特性之瞭解,在其共振頻率及共振模態的實驗量測上有其必要性。由於壓電材料具備電能及機械能耦合效應,因此本篇論文將採用以位移量測為基礎的光學干涉技術及以電場特性為基礎的阻抗分析技術獲得壓電材料的振頻與振型等資料。
本文中以三種實驗技術AF-ESPI、LDV及阻抗分析相互配合,首先對單層壓電材料的振動特性進行實驗量測,並利用有限元素分析提供數值驗證,之後以披覆四種不同電極的壓電平板為例,探討電極分佈對平板振動特性之影響。最後則將相同分析方法應用到積層式壓電陶瓷致動器及壓電陶瓷複合層板振動特性之探討;在壓電陶瓷複合層板部分也將對壓電陶瓷在層板中的感測特性進行初步的評估。
The investigations of vibration characteristics for piezoceramic materials are usually restricted to the signal layer case. To extend the engineering applications for piezoceramic materials, the multi-layered or composite structure is preferred in future design concept. To have a thoroughly understanding on the vibration characteristics of piezoelectric multi-layered structures, the experimental measurements of resonant frequencies and mode shapes are important. Because the coupling effect between the mechanical energy and electrical energy in piezoelectric materials, the experimental techniques used in this dissertation include the optical interferometry that is based on the displacement measurement and the impedance analyzer that is based on the electrical properties measurement.
In this dissertation, three experimental techniques, AF-ESPI、LDV and impedance analyzer are used to obtain the vibration characteristics of piezoceramic materials and the experimental results are verified by FEM simulation. Firstly, the single layer cases for beams and plates that are made of piezoceramics are analyzed. Then, square plates covered with four different design of electrodes are used to investigate the influence of electrode effect on the vibration properties of piezoceramics plates. Finally, the same methodology is applied to analyze the multi-layered piezoelectric actuator and the piezoelectric laminated composite structures. A preliminary study of piezoelectric materials used as a sensor embedded in a piezoelectric laminated composite plates is made.
中文摘要 一
英文摘要 二
目錄 四
表目錄 七
圖目錄 九
符號說明 十四
第一章 緒論
1-1 研究動機 1
1-2 文獻回顧 4
1-3 內容簡介 13
第二章 實驗技術的理論推導及系統架設
2-1 電子斑點干涉術的基本理論 15
2-1-1 面外振動的量測 16
2-1-2 面內振動的量測 20
2-2 雷射都卜勒振動儀 24
2-2-1介紹 24
2-2-2雷射都卜勒振動儀的量測原理 27
2-2-3 LDV-DSA量測架構說明 30
2-3 阻抗分析儀用於壓電元件共振頻率的判定 32
第三章 壓電材料之振動特性分析
3-1 壓電理論 36
3-2 壓電樑之振動特性分析 42
3-2-1 壓電樑統御方程式之推導 42
3-2-2 以 Galerkin 方法分析單邊及對邊固定的壓電樑
振動 46
3-2-3 結果與討論 51
3-3 壓電平板的振動特性分析(一) 56
3-3-1 簡介 56
3-3-2 實驗結果及數值分析的比較 57
3-4 壓電平板的振動特性分析(二) 63
3-4-1 簡介 63
3-4-2 實驗結果與數值分析的比較 63
3-5 分佈電極壓電平板的振動特性分析 67
3-5-1 簡介 67
3-5-2 實驗結果與數值分析的比較 67
第四章 積層式壓電致動器的動態特性分析
4-1 簡介 75
4-2 單層壓電圓板的振動特性分析 76
4-3 積層式圓柱形壓電致動器之振動特性分析 80
4-4 結論 84
第五章 壓電陶瓷複合層板之振動特性分析
5-1 簡介 87
5-2 複合材料製造及材料係數的量測 90
5-2-1 複合材料選擇 90
5-2-2 複材製造及材料係數量測的相關實驗設備 91
5-2-3 複合材料製程及材料係數量測 93
5-3 壓電陶瓷複合層板的振動特性之數值分析與實驗量測 98
5-3-1 壓電陶瓷複合層板的製造程序 98
5-3-2 複材層板理論的簡介 99
5-3-3 FEM的數值模擬分析 103
5-3-4 實驗結果與數值分析比較與討論 105
5-4 壓電陶瓷材料在複合層板中的感測特性分析 111
5-4-1 簡介 111
5-4-2 實驗結果 112
5-5 結論 114
第六章 結論與展望
6-1 本文主要成果 116
6-2 尚待努力方向 118
參考文獻 120
Adelman, N. T. and Stavsky, Y., “Axisymmetric Vibrations of Radially Polarized Piezoelectric Ceramic Cylinders,” Journal of Sound and Vibration, 38(2), 245-254 (1975).
Bailey, T., James, T. and Hubbard, J., "Distributed Piezoelectric Polymer Active Vibration Control of a Cantilever Beam," AIAA Journal, 8(5), 605-611 (1985).
Bhargava, A., Chaudhry, Z., Liang, C. and Rogers, C. A., "Experimental Verification of Optimal Actuator Location and Configuration Based on Actuator Power Factor," Journal of Intelligent Material Systems and Structures, 6(3), 411-418 (1995).
Boxiang, L., Harald, A., Heiner, E. and Eckhardt, Z., "Real Time Investigation of Rotating Objects using ESPI System," Proceeding of SPIE, 1026, 218-221 (1988).
Butters, J. N. and Leendertz, J. A., "Speckle Pattern and Holographic Techniques in Engineering Metrology," Optics and Laser Technology, 3(1), 26-30 (1971).
Chang, M., “In-plane Vibration Displacement Measurement Using Fiber-Optical Speckle Interferometry,” Precision Engineering, 16(1), 36-41 (1994).
Chang, S. H. and Chou, C. C., “Electromechanical Analysis of an Asymmetric Piezoelectric/Elastic Laminate Structure: Theory and Experiment,” IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, 46(2), 441-451 (1999).
Chang, S. H. and Tung, Y. C., “Electro-elastic Characteristics of Asymmetric Rectangular Piezoelectric Laminate,” IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, 46(4), 950-960 (1999).
Chang, S. H., Du, B. C. and Lin, J. F., “Electro-Elastic Modeling of annular Piezoceramic Actuating Disk Transducers,” Journal of Intelligent Materials Systems and Structures, 10(5), 410-421 (2000).
Creath, K. and Slettemoen, G. A., "Vibration-Observation Techniques for Digital Speckle-Pattern Interferometry," Journal of Optical Society of America (A), 2(10), 1629-1636 (1985).
Crawley, E. F. and de Luis, J., "Use of Piezoelectric Actuators as Elements of Intelligent Structures," AIAA Journal, 25(10), 1373-1385 (1987).
Daniel, R., Elastic Waves in Solids II, Springer-Verlag, Germany, 2000.
Ellingsrud, S. and Rosvold, G. O., “Analysis of a data-based TV-Holography System used to Measure Small Vibration Amplitudes,” Journal of Optical Society of America (A), 2(10), 1629-1636 (1985).
Francois, M. G. and Jacek, J., “Electromechanical Response of Polymer Films by Laser Doppler Vibrometry,” Journal of Acoustic Society of America, 103(3), 1421-1427 (1996).
Gabor, D., “A New Microscope Principle,” Nature, 161, 777-778 (1948).
Guo, N., Cawley, P. and Hitchings, D., “The Finite Element Analysis of the Vibration Characteristics of Piezoelectric Discs,” Journal of Sound and Vibration, 159(1), 115-138 (1992).
Hernandes, J. A., Almeida, S. F. M. and Nabarrete, A., “Stiffening Effects on the Free Vibration Behavior of Composite Plates with PZT Actuators,” Composite Structures, 49(1), 55-63 (2000).
Hibbit, Karlsson and Sorensen, Inc., ABAQUS User’s Manual, version 5.8 (1998).
Hfgmoen, K. and Lfkberg, O. J., "Detection and Measurement of Small Vibrations using Electronic Speckle Pattern Interferometry," Applied Optics, 16(7), 1869-1875 (1977).
Holland, R., “Contour Extensional Resonant Properties of Rectangular Piezoelectric Plates,” IEEE Transactions on Sonics and Ultrasonics, SU-15(2), 97-105 (1968a).
Holownia, B. P., “Non-Destructive Testing of Overlap Shear Joints using Electronic Speckle Pattern Interferometry,” Optics and Lasers in Engineering, 6(2), 79-90 (1985).
Huang, C. H. and Ma, C. C, “Vibration Characteristics for piezoelectric Cylinders using Amplitude-Fluctuation Electronic Speckle Pattern Interferometry,” AIAA Journal, 36(12), 2262-2268 (1998).
Huang, C. H. and Ma, C. C, “Vibration Characteristics of Composite Piezoceramic Plates at Resonant Frequencies: Experimental and Numerical Calculations,” IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, 48(4), 1147-1156 (2001).
Huang, J. H., “Static and Dynamic Electromechanical Responses of Piezoelectric Transducers,” Material Letters, 50(4), 209-218 (2001).
Ikeda, T., Fundamentals of Piezoelectricity, Oxford University Press (1996).
Jeong, T. G. and Bogy, D. B., "Natural Frequencies of Sliders and Transducers used to Detect Slider-Disk Contacts," IEEE Transactions on Magnetics, 25(5), 3725-3727 (1989).
Jones, R. and Wykes, C., "General Parameters for the Design and Optimization of Electronic Speckle Pattern Interferometers," Optica Acta, 28(7), 949-972 (1981).
Jones, R. and Wykes, C., Holographic and Speckle Interferometry, Cambridge University Press (1989).
Kharouf, N. and Heyliger, P. R., “Axisymmetric Free Vibration of Homogeneous and Laminated Piezoelectric Cylinders,” Journal of Sound and Vibration, 174(4), 539-561(1994).
Kim, S. J. and Jones, J. D., “Quasi-Static Control of Natural Frequencies of Composite Beams using Embedded Piezoelectric Actuators,” Smart Materials and Structures, 4(2), 106-112 (1995).
Koga, I., “Radio-Frequency Vibrations of Rectangular AT-Cut Quartz Plates,” Journal of Applied Physics, 34(8), 2357-2365 (1963).
Koyuncu, B., “The Investigation of High Frequency Vibration Modes of PZT-4 Transducers using ESPI Techniques with Reference Beam Modulation,” Optics and Lasers in Engineering, 1(1), 37-49 (1980).
Kunkel, H.A., Locke, S. and Pikeroen, B., “Finite-Element Analysis of Vibrational Modes in Piezoelectric Ceramics Disks,” IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, 37(4), 316-328 (1990).
Kyihwan, P., Seonjae, K., Sangyol, Y. and Jekil, R., “Development of Continuous Scanning Laser Doppler Vibrometer for Vibration Mode Shape Analysis,” Proceedings of the 2000 IEEE International Conference on Control Applications, September, 25-27 (2000).
Lee, C. K., “Theory of Laminated Piezoelectric Plates for the Design of Distributed Sensors/Actuators, Part I: Governing Equations and Reciprocal Relationships,” Journal of Acoustic Society of America, 87(3), 1144-1158 (1990).
Lee, C. K. and Wu, G. Y., “High Performance Doppler Interferometer for Advanced Optical Storage System,” Japanese Journal of Applied Physics, 38(3B), 1730-1741 (1999).
Leith, E. N. and Upatnieks, J., "Reconstructed Wavefronts and Communication Theory," Journal of Optical Society of America, 52, 1123-1130 (1962).
Lin, M. W., Abatan, A. O. and Rogers, C. A., "Application of commercial finite element codes for the analysis of induced strain-actuated structures,” Journal of Intelligent Material Systems and Structures, 5(6), 869-875 (1994).
Liu, W. and Tan, Y., "Singlemode Optical Fiber Electronic Speckle Pattern Interferometry," Optics and Lasers in Engineering, 25(2-3), 103-109 (1996).
Lfkberg, O. J. and Hfgmoen, K., "Use of Modulated Reference Wave in Electronic Speckle Pattern Interferometry," Journal of Physics E:Scientific Instruments, 9, 847-851 (1976).
Lfkberg, O. J., "Electronic Speckle Pattern Interferometry," Physics in Technology, 11, 16-22 (1980).
Lfkberg, O. J., "ESPI-The Ultimate Holographic Tool for Vibration Analysis," Journal of Acoustic Society of America, 75(6), 1783-1791 (1984).
Lfkberg, O. J. and Malmo, J. T., "Detection of Defects in Composite Materials by TV Holography," NDT International, 21(4), 223-228 (1988).
Lfkberg, O. J. and Malmo, J. T., "Long-Distance Electronic Speckle Pattern Interferometry," Optical Engineering, 27(2), 150-156 (1988).
Ma, C. C and Huang, C. H., “The Investigation of Three Dimensional Vibration for Rectangular Parallelepipeds by using the AF-ESPI Method,” IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, 48(1), 142-153 (2001).
Malmo, J. T., Lfkberg, O. J. and Slettemoen, G. A., “Interferometric Testing at Very High Temperatures by TV-Holography,” Experimental Mechanics, 28(3), 315-321 (1988).
Moilanen, H. and Leppavuori, S., “Laser Interferometric Measurement of Displacement-Field Characteristics of Piezoelectric Actuators and Actuator Materials,” Sensors and Actuators, A: Physical, 92(1-3), 326-334 (2001).
Moore, A. J. and Tyrer, J. R., "An Electronic Speckle Pattern Interferometer for Complete In-plane Displacement Measurement," Measurement Science and Technology, 1, 1024-1030 (1990).
Nakadate, S., Saito, H. and Nakajima, T., “Vibration Measurement using Phase-Shifting Stroboscopic Holographic Interferometry,” Optical Acta, 33(10), 1295-1309 (1986).
Nishizawa, O., Satoh, T. and Lei, X., “Detection of Shear Wave in Ultrasonic Range by using a Laser Doppler Vibrometer,” Review of Scientific Instruments, 69(6), 2572-2573 (1998).
Oswin, J. R., Salter, P. L., Santoyo, F. M. and Tyrer, J. R., “Electronic Speckle Pattern Interferometric Measurement of Flextensional Transducer Vibration Patterns: in Air and Water,” Journal of Sound and Vibration, 172(4), 433-448 (1994).
Petzing, J. N. and Tyrer, J. R., “Improved Interferometric Techniques for Measuring Flextensional Transducer Vibration Patterns Underwater,” Journal of Sound and Vibration, 193(4), 877-890 (1996).
Ratnam, M. M., Evans, J. R. and Tyrer, J. R., “Measurement of Thermal Expansion of a Piston using Holographic and Electronic Speckle Pattern Interferometry,” Optical Engineering, 31(1), 61-69 (1992).
Ronald F, Gibson, Principles of Composite Material Mechanics, McGraw-Hill, Inc (1994).
Rossi, G. L., Santolini, C., Giachi, M. and Generosi, S., “The Application of a Laser Scanning Vibrometer for Dynamic Characterization of Large Impellers,” Measurement, 24(1), 33-41 (1998).
Shellabear, M. C. and Tyrer, J. R., "Application of ESPI to Three-dimensional Vibration Measurements," Optics and Lasers in Engineering, 15, 43-56 (1991).
Slettemoen, G. A., "General Analysis of Fringe Contrast in Electronic Speckle Pattern Interferometry," Optica Acta, 26(3), 313-327 (1979).
Slettemoen, G. A., "Electronic Speckle Pattern Interferometric Systems Based on a Speckle Reference Beam," Applied Optics, 19(4), 616-623 (1980).
Stewart, M., Cain, M. G. and Battrick, W., “Surface Displacement Mapping of Piezoelectric Multilayer Actuators,” Eighth International Conference on Dielectric Materials, Measurements and Applications, (IEE Cof, pub), 473, 445-447 (2000).
Sun, F. P., Mitchell, L. D. and Arruda, J. R. F., "Mode Decoupling Considerations in Mode Shape Measurements of a Plate with Monoexcitation and Laser Doppler Vibrometer," Experimental Techniques, 17(4), 31-37 (1993).
Tiersten, H. F., Linear Piezoelectric Plate Vibrations, Plenum, New York (1969).
Tsai, S. W., Composites Design, 3rd edition, Dayton, Ohio (1987).
Wang, W. C., Hwang, C. H. and Lin, S. Y., "Vibration Measurement by the Time-Averaged Electronic Speckle Pattern Interferometry Methods," Applied Optics, 35(22), 4502-4509 (1996).
Wykes, C., "Use of Electronic Speckle Pattern Interferometry (ESPI) in the Measurement of Static and Dynamic Surface Displacement," Optical Engineering, 21(3), 400-406 (1982).
Winther, S., ŗD Strain Measurement using ESPI," Optics and Lasers in Engineering, 8(1), 45-57 (1988).
Wolff, A., Cramer, D., Hellebrand, I., Probst, I. and Lubitz, K., ”Optical Two Channel Elongation Measurement of PZT Piezoelectric Multilayer Stack Actuators,” Proceedings of the ninth IEEE International Symposium on 1994, Applications of Ferroelectronics, 755-757 (1994).
Wykes, C., "Use of Electronic Speckle Pattern Interferometry (ESPI) in the Measurement of Static and Dynamic Surface Displacement," Optical Engineering, 21(3), 400-406 (1982).
吳建鋒,壓電感測器及致動器之分析,私立逢甲大學機械工程研究所碩士論文,89年6月.
陳文祥,"複合材料機械性能檢測," 科儀新知,第十七卷第四期,73-85, (1996).
黃吉宏,應用振幅變動電子斑點干涉術探討三維壓電材料體及含裂紋板的振動問題,國立台灣大學機械工程研究所博士論文,87年6月.
謝東明,應用電子斑點光學干涉術探討含缺陷平板之振動特性,國立台灣大學機械工程研究所碩士論文,88年6月.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 郭碧照、李茂盛(1992)護理措施對不孕症接受生殖科技治療婦女社會心理反映與壓力感受之效果探討。護理雜誌39(1):頁95-105
2. 劉春年、李茂盛、郭碧照(1990):不孕症婦女之社會心理反應及其相關因素的探討。衛生教育雜誌。卷期/年月 12 民80.12 頁1-12。
3. 陳文祥,"複合材料機械性能檢測," 科儀新知,第十七卷第四期,73-85, (1996).
4. 郭美璋、張利中、江漢聲(2000):男性不孕病人的生育諮商。臺北市醫師公會會刊44:2頁24-27。
5. 陳美月、申文姬(1991):不孕夫婦的女性角色、生育態度、婚姻家庭關係之探討。榮總護理8:1頁53-61。
6. 陳佳惠(1999):現代夫婦的夢魘-不孕症。藥學雜誌15:2頁62-66。
7. 李麗熒、金繼春(1996):南部某醫學中心不孕婦女感受到的壓力源。護理研究4:2頁186-194。
8. 李麗熒(1994):不孕症婦女的壓力源及因應行為。輔英學報14頁50-68。
9. 李從業 張昇平 陳嘉琦(1997):不孕夫妻的困擾程度、壓力感受及因應策略的比較。護理研究。卷期/年月 5:5 民86.10 頁425-438。
10. 吳英璋(1986):成功的面對生活壓力─生活變動的應變模式。張老師月刊,17(5),38-40。
11. 利翠珊(1999):婚姻親密情感的內涵與測量。中華心理衛生學刊12:4頁29-51。
12. 利翠珊(1999)。已婚女性家庭系統的交會:親情與角色的兩難。中華心理衛生學刊12:3頁1-26。
13. 蘇燦煮(1993):不孕婦女決定接受生殖科技治療時之主觀經驗與護理需求。護理研究(1):50、59。
14. 蘇燦煮、余玉眉、陳月枝(1998):不孕婦女面對不孕及治療的困惑與護理需求。護理雜誌45:3頁15-20。
15. 26. 楊照(2001),銀行、銀行家與中央銀行,新新聞,第743期,第77頁,2001年5月31~6月6日。
 
系統版面圖檔 系統版面圖檔