(3.238.186.43) 您好!臺灣時間:2021/02/28 15:07
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:許聿翔
研究生(外文):Yu-Hsiang Hsu
論文名稱:壓電系統其力電場互動之理論與實驗―壓電變壓器、柔性結構控制、及自由落體感應子之創新突破基礎
論文名稱(外文):Theory and Experiment of Electrical and Mechanical Field Interactions of Piezoelectric Systems―Foundation of Innovative piezo-transformers, Smart Structures, and Free-Fall Sensors
指導教授:李世光李世光引用關係
指導教授(外文):Chih-Kung Lee
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:應用力學研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:英文
論文頁數:330
中文關鍵詞:壓電變壓器柔性結構控制自由落體感應子均佈型感應子智能結構
外文關鍵詞:piezoelectric transformerflexible structure controlfree-fall sensordistributed sensorsmart structue
相關次數:
  • 被引用被引用:4
  • 點閱點閱:259
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本文針對壓電系統於柔性結構控制,自由落體感應子及壓電變壓器上的應用提出全新的設計觀點,並引入兩種新型的均佈式感應子來設計柔性結構控制及自由落體感應子的壓電系統,分別為一增益函數與相位可分立設計之振動檢測裝置(APROPOS device)及具對稱特性之增益函數與相位可分立設計之振動檢測裝置(symmetric APROPOS device)。其中增益函數與相位可分立設計之振動檢測裝置於設計過程中引入映象原理及窗函數的觀念,其設計理念將有限域結構投射至無限域中,以求對系統的轉移函數加入具無相位延遲特性的各種低通濾波器;而具對稱特性之增益函數與相位可分立設計之振動檢測裝置利用其對稱的電極來量出結構應變分布的偶函數部分,而可直接於設計理念中,對有限域感應子的轉移函數中加入具沒有相位延遲特性的多種低通濾波器。這兩種新發明之均佈型的振動檢測裝置成功的突破傳統均佈式感應子的限制,可以順利處理結構的邊界條件及消散波的影響,因此本文所發明的這兩種均佈式感應子設計理念可將感應子設置在待測結構上的任意位置,如此一來,點式均佈型感應子的設計理念即可實現,所謂點式均佈型感應子乃是應用增益函數與相位可分立設計之振動檢測裝置來將一柔性結構作為感應子之本體結構,並利用前述創新發明來對此本體結構的轉移函數提供一沒有相位延遲的低通濾波器,而後再將此一以柔性結構為本體感應子結構的感應子當作點式感應子來使用,因此點式均佈型感應子具有高感應度及可用頻寬的特性。本文所發明之自由落體感應子採用了點式均佈型感應子的設計理念,發展成功全球唯一具有量測自由落體運動的小型創新感應子,可提供預警訊號於所附著的系統,用途包含提供各種可攜式裝置的自我保護設計所需之觸發訊號。
不同於前述對柔性結構控制及自由落體感應子的設計觀點,壓電變壓器是一個傳遞能量的元件,需工作在最佳能量傳輸的狀況下,並作用在一個有限結構的共振頻上,所以壓電變壓器是一個力電完全偶合的系統,傳統的壓電變壓器皆以一等效電路來模擬壓電變壓器的機械振動行為,但壓電變壓器本身是一個有限的機械結構,其統禦方程式是一偏微分方程,並非由一個常微分方程所表示的等效電路所可簡化之,再者,壓電變壓器是一個力電完全偶合的結構,其機械共振特性將受到其機械及電性的邊界條件所影響,當用一等效電路模擬壓電變壓器的振動行為時,其力電偶合的現象將被均化,而所有空間的振動特性都無法被此等效電路所描述,本文導出壓電變壓器的完整動態方程式,並考慮其機械及電性的邊界條件,由於壓電變壓器的空間效應被完整考慮,本文提出以空間權重的觀念設計創新壓電變壓器,以達到壓電變壓器的最佳化設計。為了使此一新設計之壓電變壓器可成為一成熟的產品,本文提出其整個壓電變壓器系統的設計觀點,以尋找推動大量生產所需的各種設計參數。一本文所提設計流程,壓電變壓器的架設、導線的設置、熱的導出及尺寸的挑選設計等,可被完整的考慮來設計最佳化的壓電變壓器。易言之,基於所討論的系統設計觀點,本文提出壓電變壓器最佳化的系統設計流程,以達到量產的需求。
總而言之,本文以系統設計的眼光,提出對柔性結構控制,自由落體感應子及壓電變壓器的全新設計觀點,並以理論及實驗證明此全新設計觀點於壓電系統設計的衝擊及其貢獻。
In this dissertation, brand new design viewpoints of piezoelectric systems applicable to the smart structure, free-fall sensor, and piezoelectric transformer were detailed. Two series of innovative devices, which are APROPOS device and symmetric APROPOS device, were introduced pursue smart structure applications. By introducing the concepts of the method of image and the window function, the APROPOS device can introduce additional no-phase delay filters in the infinite domain. On the other hand, symmetric APROPOS device matched the even part of the structure strain to introduce no-phase delay low-pass filters. With the concepts of APROPOS device and symmetric APROPOS device, new design concepts of point and distributed sensors were developed. Both of the APROPOS device and symmetric APROPOS device were distributed sensors that could be placed at any locations on a finite structure and have the abilities to deal with low wavelength range, boundary conditions, and evanescent waves, which broke through the limitations of traditional distributed sensors. A free-fall sensor is a Point-Distributed sensor, which applied the no-phase delay low-pass filter induced by the APROPOS device on its flexible sensor structure, had high sensitivity at low frequency and wide usable bandwidth. By possessing these abilities, the free-fall sensor was found to be the only sensor that could measure the free-fall motion and offer warming signal to the attached object to perform protection.
Different from the design viewpoints of the smart structures and free-fall sensor, the piezoelectric transformer required optimized power transformer. Piezoelectric transformers should be considered not only as a mechanical system but also an electrical fully coupled system, which uses finite structure resonance to perform voltage conversion. Traditional piezoelectric transformers used an equivalent circuit model concept to simulate its mechanical motion. Since the field equation of a piezoelectric transformer is a partial differential equation, an equivalent circuit model developed based on an ordinary differential equation cannot express its performance thoroughly. Since the motion of the piezoelectric transformer is determined by both the mechanical and the electrical boundary conditions, the transfer function and the electrical impedance of a piezoelectric transformer will vary with different electrical and mechanical conditions. However, it has been discovered that once an equivalent circuit was used to simplify the mechanical motion of the piezoelectric transformer, the coupling effects between the mechanical and the electrical properties will be averaged out and all spatial information will be lost. A fully coupled field equation is derived in this article to examine the motion of the piezoelectric transformer by taking into account both the mechanical and electrical boundary conditions. It can be shown that by using this newly developed field equation, a new concept using a weighting function in the spatial domain can be adopted to optimize the electro-mechanical coupling effects. To design a piezoelectric system that could be commercialized, the influences of support structure, heat conduction, wire bounding, and compatibility of mass production were also detailed. In addition, the design flow of a commercialized piezoelectric transformer system was summarized. In summary, all of the design viewpoints of applying the piezoelectric systems onto the smart structure, free-fall sensor, and piezoelectric transformer were all verified theoretically and experimentally.
Chapter 1. Introduction 1
1.1 Piezoelectricity 4
1.1.1 The constitutive equations of piezoelectric materials 7
1.1.2 The governing equations of piezoelectric solids 12
1.1.3 The boundary conditions and continuity conditions of a piezoelectric solid 13
1.2 Overview 16
Part I. Electro-mechanically decoupled piezoelectric system
A. Smart Structures
Chapter 2 Smart Structures and the Flexible Structure Control 22
Chapter 3 Theory of Piezoelectric Laminates 29
3.1 The Sensor Equation for a Fourth Order Structure System 35
3.2 The Sensor Equation for the Second Order Structure System 38
3.3 The Concept of Distributed Sensor and Actuator 41
Chapter 4 The Concepts of the APROPOS Device 44
4.1 Wave Modes in One-Dimensional Plate 44
4.2 The Method of Image 49
4.3 Design Concepts of APROPOS Device 51
4.3.1 The base of the APROPOS device 59
4.3.2 The superposition characteristic of the APROPOS device 63
4.3.3 Implement the APROPOS device by the method of image 70
4.3.4 Implement the APROPOS device by the window function 84
4.3.5 The APROPOS device for various boundary conditions 95
4-4 The APROPOS Device for Second Order Structure System 98
4.4.1 Wave modes in second order structure system 98
4.4.2 The sensor equation of a second order APROPOS Devices 100
4.4.3 Implementation of a second order APROPOS devices 101
4.4.4 Developing testing methodology: A new shaker 103
4.4.5 Experimental set-up 105
Chapter 5 The Frequency Selectivity of the APROPOS Device in Spatial Domain 109
Chapter 6 Concepts of the Symmetric APROPOS Device 117
6.1 Sensor Equation of the Symmetric APROPOS Device 118
6.2 Sensor Equation of a Symmetric APROPOS Device on a cantilever Plate 121
6.2.1 Symmetric APROPOS device as a point sensor 129
6.2.2 Experimental set-up
6.3 Point-Distributed Strain Gage Designed by the Symmetric APROPOS Device 137
6.3.1 Point-Distributed strain gage 142
6.3.2 Experimental set-up 144
Chapter 7 The Active APROPOS Device 144
7.1 Active APROPOS Device by Feedback Control Theory 145
7.2 Experimental Setup 152
B. Free-Fall Sensor
Chapter 8 Introduction to the Miniature Free-Fall Sensor 156
8.1 The Possibility and Practicability of the Free-Fall Sensors 157
8.2 Free-fall Sensors and Flexible Structures Sensing 158
Chapter 9 The Concept of the Miniature Free-Fall sensor 164
9.1 The Concept of Point-Distributed Sensor 162
9.2 The Measurement of Free-Fall Motion: Filtered by Electrical circiuts 170
9.3 Implementation of a Miniature Free-Fall Sensor by the APROPOS Device 177
9.4 Other Applicable Physical Effects 179
Chapter 10 General View of the APROPOS Device and the Symmetric APROPOS Device on Point and Distributed Sensors 186
Part II. Electro-mechanical fully coupled piezoelectric system
C. Piezoelectric Transformer
Chapter 11 Introduction to the Piezoelectric Transformer 193
Chapter 12 Theory of Piezoelectric Plate 203
12.1 Two Dimensional Constitutive Equation of Piezoelectric Plates 204
12.2 Governing Equations of one-Dimensional Piezoelectric Plate 209
12.2.1 Governing equations of the surface-to-surface piezoelectric transformer 209
12.2.2 Governing equations of the Rosen-type piezoelectric transformer 212
Chapter 13 The Field Equation of the Piezoelectric Transformer 219
13.1 General Solutions for Surface-to-Surface Piezoelectric Transformer 219
13.1.1 Optimization of the surface-to-surface piezoelectric transformer 224
13.1.1-1 Maximum power transfer by impedance match 225
13.1.1-2 Optimizing sensors and actuators by matching modal strain 228
13.1.2 Experimental set-up of the surface-to-surface piezoelectric transformer 230
13.2 General Solutions for the Rosen-type Piezoelectric Transformer 238
13.2.1 Optimization of the Rosen-type piezoelectric transformer 242
13.2.1-1 Maximum power transfer by impedance match 242
13.2.1-2 Optimizing sensors and actuators by matching modal strain 244
13.2.2 Experimental setup of the Rosen-type piezoelectric transformer 246
Chapter 14 Systematic Design of the Piezoelectric Transformer 254
14.1 The Design of the Feedback Node 259
14.1.1 Pole-zero alternating phenomenon between sensor and actuator on a finite structure 261
14.1.2 Transfer functions of the feedback node on piezoelectric plates 263
14.1.3 Experimental set-up 272
14.1.4 Feedback node design for piezoelectric transformers 281
14.2 The Support Structures of the Piezoelectric Transformer 285
14.3 The Shape Effect of the Piezoelectric Transformer 291
14.4 Manufacturing Process Design 295
14.5 Design Flow of the Piezoelectric Transformer 300
Chapter 15 Conclusions 302
ANSI/IEEE Standard 176, Sept. 1987, Piezoelectricity, The Institute of Electrical and Electronics Engineers, Inc.
Agilent Technologies Japan, Ltd., January 2001, “Agilent 4294A Precision Impedance Analyzer Operation Manual,” Component Test PGU-Kobe 1-3-2, Murotani, Nishi-ku, Kobe-shi, Hyogo, 651-2241 Japan.
Agilent Technologies Japan, Ltd., March 2000, “Agilent 4395A Network/ Spectrum/ Impedance Anaylzer Operation Manual,” Component Test PGU-Kobe 1-3-2, Murotani, Nishi-ku, Kobe-shi, Hyogo, 651-2241 Japan.
Agilent Technologies Japan, Ltd., March 2000, “Agilent 3458A Multimeter User’s Guide,” 815 14th ST. S. W. Loveland, CO 80537, USA.
Bode, H.W., 1945, Network Analysis and Feedback Amplifier Design, D. Van Nostrand, New York, New York, USA.
Bailey, T. and Hubbard, J. E., September-October 1985, “Distributed Piezoelectric-Polymer Active Vibration Control of a Cantilever Beam,” Journal of Guidance, Control, and Dynamics, Vol. 8(5), pp. 605-611.
Bracewell, R. N., 1978, The Fourier Transform and Its Application, 2nd ed., McGraw-Hill, New York, USA.
Blevins R. D., 1979, Formulas for Natural Frequency and Mode Shape, Robert E. Krieger Publishing Co., Inc., Florida, USA, pp. 108-109.
Berlincourt, D. A., and Lawrence, S. S., May 29 1973, “Piezoelectric Transformers,” US Patent No. 3736446.
Cady, W. G., 1964, Piezoelectricity, Vol. 1, pp. 1-8, McGraw-Hill, New York, New York.
Collins, S. A., Miller, D. W., and von Flotow, A. H., 1994, “Distributed Sensors as Spatial Filters in Active Structure Control,” Journal of Sound and Vibration, Vol. 173(4), pp. 471-501.
Campbell, C. K., 1989, Surface Acoustic Wave Devices and Their Signal Processing Applications, Academic Press, Inc., Boston, Massachusetts, USA.
Campbell, C. K., 1998, Surface Acoustic Wave Device for Mobile and Wireless Communications, Academic Press, Inc., San Diego, CA, USA.
Colloms, M., 1997, High Performance Loudspeaker, John Wiley & Sons, New York, USA.
Cheng, D. K., November 1992, Field and Wave Electromagnetics, 2nd edition, Addison-Wesley Publishing Company, Inc., Menlo Park, California, USA.
Crandall, S. H., Dahl, N. C., and Lardner, T. J., 1978, An Introduction to the Mechanics of Solids, 2nd edition, McGraw-Hill, Inc., Singapore.
Das, A. and Wada, 2001, B. Selected Papers on Smart Structures for Spacecraft, SPIE optical engineering press, Bellingham, Washington, USA.
Dorf, B.,1998, Modern Control System, 8th edition, Addison Wesley, New York, USA, 1998.
Fung, Y. C., 1965, Foundation of Solid Mechanics, Prentice-Hall, Inc. Englewood Cliffs, New Jersey, USA.
Fraden, J., 1996, Handbook of Modern sensors, Springer-Verlag, New York, New York, USA.
Graff, K. F., 1975, Wave Motion in Elastic Solids, Dover Publications, Inc., New York, New York, USA.
Gobin, P. F., Salvia, M., Baboux, J. C., and Goujon, L., October 23-26, 2000, “Brief Overview of the Physical Basis for the Active materials concept,” Eleventh International Conference on Adaptive Structures and Technologies (ICAST 2000), Nagoya, Japan, Technomic Publishing Company, Inc., USA, pp. 439-446.
Grossman, D., 1988, Advanced Engineering Mathematics, Harper & Row, New York, New York, USA.
Griffith, D. J., 1999, Introduction to Electrodynamics, 3rd edition, Prentice Hall International, Inc., Upper Saddle River, New Jersey, USA.
Huelsman, L. P., 1993, Active and Passive Analog Filter Design.” McGRAW-Hill, Inc. New York, New York.
Horowitz, H. and Hill, W., 1995, The Art of Electronics, Cambridge University Press, New York, USA.
Harris, F. J., January 1978, “On The Use of Windows for Harmonic Analysis with The Discrete Fourier Transform,” Proceedings of the IEEE, Vol. 66, No. 1, pp.51-83.
Hsu, Y. H. and Lee, C. K., April 2001, “Miniature Free-Fall Sensors,” Journal of Intelligent Material Systems and Structures, Vol. 12, No. 4, pp.223-228.
Hsu, Y. H. and Lee, C. K., June 2002a, “Targeted Origin Placement for the Autonomous Gain-Phase Tailoring of Piezoelectric Sensors,” Smart Materials and Structures, Vol. 11, No. 3, pp. 444-458.
Hsu, Y. H. and Lee, C. K. 2002b, “Extending Point-Sensor Performance by Incorporating Distributed-Sensor and Window Functions Concept,” Submitted to AIAA Journal.
Hsu, Y. H. and Lee, C. K., 2002c, “Uncoupling Micromachining-Based Piezoelectric Accelerometer Performance from A Sensor Structure Transfer function,” IEEE/ASME Transactions on Mechanics (submitted).
Hsu, Y. H., Lee, C. K., and Hsiao, W. H., 2002d, “Optimizing Piezoelectric Transformer for Maximum Power Transfer,” Journal of the Acoustical Society of America (to appear).
Hsu, Y. H., Lee, C. K., and Hsiao, W. H., 2002e “Electrical and Mechanical Fully-Coupled Field Equations and Experimental Verifications of Rosen Type Piezoelectric Transformers,” Journal of the Mechanics and Physics of Solids (submitted).
Hsu, Y. H. and Lee, C. K., 2002f, “Autonomous Gain-Phase Tailoring of Rotational Acceleration Rate Sensors,” AIAA Journal (to appear).
Hsu, Y. H. and Lee, C. K., 2002g, “Extending Bandwidth of Rotational Accelerometers by Automous Gain-Phase Tailoring,” Smart Materials and Structures (review).
Hsu, Y. H. and Lee, C. K., 2002h, “On the Transfer Function Independent Gain and Phase Tailoring of Symmetric Piezoelectric Sensors,” Journal of Vibration and Acoustics (submitted).
Katz, H.W., 1959, “Solid State Magnetic and Dielectric Devices,” pp. 94-126, Wiley, New York, New York.
Kawai, H., 1969, “The Piezoelectricity of Poly(vinylidene fluoride),” Jpn. J. Appl. Phys., Vol. 8, pp. 975-976.
Kazimierczuk, M.K. and Czarkowsi, D., 1995, Resonant Power Converters, John Wiley & Sons, Inc., New York, New York.
Katz, H.W., 1959, “Solid State Magnetic and Dielectric Devices,” pp. 94-126, Wiley, New York, New York.
Kawai, J. and Tagami, B., November 1994, “Piezoelectric Transformer and Method for Driving the same,” US Patent No. 5365141.
Kanayama, K. and Maruko, N., December 1995, “Piezoelectric Transformer,” US Patent No. 5701049.
Lee, C. K., May 1987, “Piezoelectric Laminates for Torsion and Bending Modal Control: Theory and Experiment,” Ph. D. Dissertation, Institute of Applied Mechanics, Cornell University.
Lee, C. K., March, 1990, “Theory of Laminated Piezoelectric Plates for the Design of Distributed Sensors/Actuators: Part. IGoverning Equations and Reciprocal Relationships,” J. Acoust. Soc. Am., Vol. 87, pp. 1144-1158.
Lee, C. K. and Moon, F. C., June 1990 "Modal Sensors/Actuators," ASME Journal of Applied Mechanics, Vol. 57, pp. 434-441.
Lee, C. K. and O’Sullivan, T. C., 1991, “Piezoelectric Strain Rate Gages,” J. Acoust. Soc. Am., Vol. 90(2), pp. 945-953.
Lee, C. K., Lin, C. T., Hsiao, C. C., Kuo, C. C., and Lin, J. Y., April 18-19, 1996, “Innovative Piezoelectric Acceleration Rate Sensors,” Proceedings of the 37th AIAA/ ASME/ ASCE/ AHS/ ASC Structures, Structural Dynamics, and Material Conference, Salt Lake City, UT, USA.
Lee, C. K., December 1992, “Piezoelectric Laminates: Theory and Experiments for Distributed Sensors and Actuators,” Intelligent Structural Systems, ed. H .S. Tzou and G. L. Anderson, pp. 75-167, Kluwer Academic Publishers, Netherlands Dordrecht.
Lee C. K., Munce A. C., Jr., T. C. O’Sullivan, May 28, 1996. “Disk Drive with Acceleration Rate Sensing,” USA Patent No. 5,521,772.
Larson, R. E., Hostetler, R. P., and Edwards, B. H., 1994, Calculus with Analytic Geometry, D. C. Heath and Company, Lexington, Massachusetts Toronto, USA.
Li, C.Y., 1997, “Design and Analysis of Piezoelectric Transformer Converters,” Ph. D Thesis, Virginia Polytechnic Institute.
Miller, D. W. Collins, S. A. and Peltzman, S. P., 1990, “Development of Spatially Convolving Sensors for Structural Control Applications,” Proceeding of the AIAA/ASME/ASCE/AHS Proceedings of the Structures, Structural Dynamics, and Materials Conference, Long Beach, CA, USA, pp. 2283-2297.
Matthys, R. J., 1992, Crystal Oscillator Circuits, Krieger publishing company, Malabar, Florida, USA.
Meirovitch L., 1986, Element of Vibration, McGraw-Hill Inc., Singapore.
Meirovitch L., 1997, Principles and Techniques of Vibrations, 3rd edition, Prentice-Hall, New Jersey.
MTI2000, March 1991, Fotonic Sensor Instruction Manual, MTI Instruments, Inc., Washington Avenue Extension, Albany, NY 12205, USA.
Madou, M., 1997, Fundamentals of Microfabrication, CRC Press LLC, New York, New York, USA.
Martin, G. D., May 1978, “On the Control of Flexible Mechanical Systems,” Ph. D. Dissertation, Stanford, California, USA.
Nye, J. F., 1972, Physical Properties of Crystals, Oxford, London.
Nippon Avionics CO., LTD, 2002, “Handy Thermo TVS-100 series,” http://www.avio.co.jp.
O’Neil, P. V., 1991, Advanced Engineering Mathematics, 3rd edition, PWS, Boston, Massachusetts, USA.
Ottesen, 1987. “Apparatus for Detecting and Correcting Extensive Vibration in a Disk File”, IBM Technical Disclosure Bulletin, vol. 30, No. 6, pp. 81-82.
Ouyang, M. and Wen, F. L., “Observations of Ultrasonic Vibration Mode and Finite Element Analysis for Piezoelectric Membrane Discs,” IEEE Trans. Ultrason. Ferroelec. & Freq. Contr. (submitted)
Rosen, C. A., 1956. “Ceramic Transformers and filters,” Proc. Electric Comp. Symp., pp. 205-211.
Rosen, C. A., 1956, “Ceramic Transformers and filters,” Proc. Electric Comp. Symp., pp. 205-211.
Rosen, C. A., April 1958, “Piezoelectric Transformers,” US Patent No. 2830274.
Royer, D. and Dieulesaint, E., 1996, Elastic Waves in Solids I, Springer, New York.
Rosen, C.A., 1956 “Ceramic Transformers and filters,” Proc. Electric Comp. Symp., pp. 205-211.
Rosen, C.A., April 1958, “Piezoelectric Transformers,” US Patent No. 2830274.
Serridge, M. and Licht, T. R., October 1986, “Piezoelectric Accelerometers and Vibration Preamplifiers,” Brüel & Kjær, Denmark.
Stanford Research Systems, Inc., July, 1996, Operating Maunal and Programming Reference: Modal SR780 Network Signal Analyzer, Stanford Research Systems, Inc., 1290-D Reamwood Avenue, Sunnyvale, California 94089, USA.
Serridge, M. and Licht, T.R., October 1986, “Piezoelectric Accelerometers and Vibration Preamplifiers,” Brüel & Kjær, Denmark.
Shipley Company L.L.C., “Microposit 450 developer,” Shipley Company, L.L.C.
455 Forest Street Marlborough, MA 01752 (http://www.shipley.com/).
Smith, C. S., April 1954, “Piezoresistive Effect in Germainium and Silicon,” Phys. Rev., Vol. 94, No. 1, pp. 42-49.
Tiersten, H. F., 1969, Linear Piezoelectric Plate Vibrations, Plenum Press, New York.
Tooru, A., July 1996, “Piezoelectric Transformer and Power Converting Apparatus Employing the same,” US Patent No. 5751092.
van der Pol, B. and Bremmer, H, 1959, Operational Calculus: Based on the Two-Sided Laplace Integral, 2nd ed., Cambridge, England: Cambridge University Press.
Vernitron Ltd., England, 1976 (now Morgan Matroc Ltd., St. Peters Rd. Rugby, Warks CV 21 3QR, UK).
Williams, J., November 1995, A Fourth Generation of LCD Backlight Technology, Linear Technology, Application Note 65, 720 Sycamore Drive, Milpitas, CA 95035, USA
Williams, J., Phillips, J., and Vaughn, G., September 1999, Ultracompact LCD backlight Inverters, Linear Technology, Application Note 81, 720 Sycamore Drive, Milpitas, CA 95035, USA.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 王金國(民89)。表現有效教學行為,發揮小班教學精神。國教輔導, 40卷2期, 頁20-24。
2. 石雅玫(民90)。花蓮地區國小教師議題中心教學信念及多元文化議題調查之研究。課程與教學季刊, 4卷1期, 頁129-154。
3. 吳鐵雄(民71)。青少年男女學生社會認知與歸因方式之關係。教育心理學報, 15期, 頁149-166。
4. 林海青(民85)。高中教師激勵模式與教學效能之研究。教育與心理研究, 19期, 59-92頁。
5. 邱兆偉、陳明鎮和楊百世(民88)。多元化師資培育制度下國民中學實習教師之教育實習成效---新、舊教育實習制度的比較評估。教育學刊, 15期, 頁91-142。
6. 洪碧霞(民72)。國中學生歸因方式及其相關因數之探討。新竹師專學報, 9期, 頁95-132。
7. 陳木金(民85)。國民小學學校教學配合措施與教師教學效能之關係研究。國立政治大學學報, 73期, 頁227-252。
8. 陳木金(民86b)。國民小學教師教學效能評鑑量表編製之研究。藝術學報, 61期, 頁221-253。
9. 陳玉蘭(民88)。國中師生對有效教學行為之意見調查研究。教育學刊, 15期, 頁171-225。
10. 郭生玉(民84)。國中學生成敗歸因型態和學業冒險取向、學習失敗忍受力關係之研究。教育心理學報, 28期, 頁59-76。
11. 郭靜姿(民83)。不同閱讀能力學生成敗歸因方式、策略運用與後設認知能力之差異比較。師大學報, 39期, 頁284-325。
12. 梁茂森(民82)。高職教師教學效能信念之研究。高雄師大學報, 4 期, 頁31-72。
13. 梁茂森(民90)。高職教師教學成敗歸因之研究。教育學刊, 17期, 頁107-124。
14. 游淑燕(民82)。專家與生手教學表現之比較研究及其對師範教育課程與教學的啟示。嘉義師院學報, 7期, 207-242頁。
15. 黃義良(民89)。國中小初任教師工作壓力與調適取向之研究。國民教育研究學報, 6期, 頁269-298。
 
系統版面圖檔 系統版面圖檔