(3.235.108.188) 您好!臺灣時間:2021/02/26 17:46
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:郭學文
研究生(外文):Kuo, Shyue Wen
論文名稱:以阻力串聯模式分析腐植酸對超濾薄膜滲流率之衰減
論文名稱(外文):Analysis of Humic Acid Fouling during Ultrafiltration Using a Resistance in Series Model
指導教授:林正芳林正芳引用關係
指導教授(外文):Lin, Cheng Fang
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:環境工程學研究所
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:104
中文關鍵詞:阻力串聯模式積垢阻力阻力指數濃度極化層阻力
外文關鍵詞:resistance in series modelfouling resistanceresistance indexpolarization layer resistance
相關次數:
  • 被引用被引用:7
  • 點閱點閱:253
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:41
  • 收藏至我的研究室書目清單書目收藏:0
本研究之目的為透過2、4、9 mg/L之腐植酸TOC濃度,1k、10k、30k三種UF薄膜及10 psi、15 psi、20 psi三種透膜壓差進行定濃度實驗,以阻力串聯模式分析各阻力參數與操作條件間之相關性。
在本研究之操作條件內,透膜壓差和薄膜孔徑影響滲流率衰減較大。9 mg/L TOC濃度時,10 psi、15 psi、20 psi之衰減各達初始滲流率之73%、69%、67%;透膜壓差在20 psi時,30k薄膜之滲流率衰減情形最嚴重達初始滲流率之58%,10k薄膜次之,1k薄膜最小。而TOC濃度之影響程度最低,其標準化滲流率曲線沒有顯著差異。
分析薄膜本質阻力RM時可知10k薄膜與30k薄膜在過濾時之性質較相近,而1k薄膜差異較大。經過24小時過濾,30k薄膜產生不可逆阻力之趨勢較10k及1k薄膜為大,不同薄膜間不可逆阻力所佔比例,以20 psi時差異最明顯,30k薄膜佔102%,10k薄膜佔68%,1k薄膜只佔16%。而透膜壓差在10∼20 psi之操作範圍內,不可逆阻力有隨透膜壓差增加而增加之趨勢。
阻力串聯模式中兩個重要參數為阻力指數φ與積垢阻力RF,其中φ為濃度極化層阻力RG之變數。不同孔徑之薄膜在0∼660分鐘之時間內,φ以1k薄膜增加最快,10k薄膜次之,30k薄膜最慢。RF有隨時間增加而增加之趨勢,而產生RF之趨勢以30k薄膜最大,相對於RM而言30k薄膜可達RM之29%。
經660分鐘之過濾,30k薄膜在過濾過程中累積的阻力相對較多,而1k薄膜則仍以RM為主要阻力來源。如TOC濃度為4 mg/L,透膜壓差為15 psi時,1k薄膜、10k薄膜及30k薄膜其RM、RF、RG所佔比例從83%、9%、8%至59%、17%、24%。
The effects of operational parameters on the permeate flux and resistances for ultrafiltration of humic acid were studied. The experiments were carried out on polysulfone hollow fiber membrane module. Ultrafiltration behaviors were analyzed by the resistance-in-series model.
The results showed that flux increased with transmembrane pressure from 10 to 20 psi and membrane pore size from 1k to 30k. Compared with membrane intrinsic resistances (RM), it was observed that 10k membrane was similar to 30k membrane and much different to 1k membrane. After ultrafiltration of 24 hours, the tendency of accumulated irreversible resistance was more significant at 30k membrane than 10k and 1k membrane.
In the resistance-in-series model, permeate flux decreases with the increase of resistances caused by fouling phenomenea (RF) and concentration polarization/gel layer formation (RG). The polarization layer resistance is a function of transmembrane pressure : RG = φ×PT, andφ is resistance index. In 660 minutes operation, RF andφall increased with tme. The increase rate of φ was higher at 1k membrane than other membranes. The tandency of accumulated RF was similar to irreversible resistance.
After filtration of 660 minutes, RM still was the most important resistance at 1k membrane and 30k membrane was accumulated lots resistance in filtration process.
謝誌 I
摘要 II
Abstract III
目錄 IV
圖目錄 VI
表目錄 X
第一章 前言 1
1.1研究緣起及目的 1
1.2研究內容 2
第二章 文獻回顧 3
2.1水中天然有機物 3
2.1.1水中天然有機物之組成 3
2.1.2腐植質基本性質分析 5
2.1.3腐植質對於淨水工程的影響 8
2.2 薄膜處理程序 10
2.2.1薄膜種類與操作形式 10
2.2.2薄膜於淨水工程之應用 12
2.3薄膜分離機制 15
2.3.1影響薄膜滲流率之因子 15
2.3.1.1薄膜特性 15
2.3.1.2進流液性質 18
2.3.1.3操作參數 18
2.3.2薄膜滲流率推估模式 20
2.3.2.1阻塞模式 21
2.3.2.2質傳模式與滲透壓模式 24
2.3.2.3阻力串聯模式 26
第三章 實驗內容與方法 31
3.1.研究內容與假設 31
3.1.1研究項目 31
3.1.2研究參數選定與假設 32
3.1.2.1進流液參數 32
3.1.2.2薄膜參數 33
3.2實驗裝置與分析設備 38
3.2.1薄膜模組 38
3.2.2薄膜過濾裝置 39
3.2.3分析儀器設備 40
3.2.3.1總有機碳(TOC)濃度 40
3.2.3.2 UV-Vis吸光度 41
3.3實驗步驟與方法 42
3.3.1腐植酸溶液之配製 42
3.3.2薄膜預處理 42
3.3.3薄膜過濾實驗 43
3.3.4阻力串聯模式與各阻力之分析 43
第四章 結果與討論 44
4.1薄膜過濾基本性質之分析 44
4.1.1滲流率衰減之變化 44
4.1.1.1透膜壓差之影響 44
4.1.1.2 腐植酸濃度之影響 48
4.1.1.3 薄膜孔徑之影響 50
4.1.2 TOC去除效率之變化 52
4.1.3 UV254去除效率之變化 56
4.2不同操作條件下之薄膜本質阻力與不可逆阻力 62
4.2.1薄膜本質阻力 62
4.2.2不可逆阻力 63
4.3阻力串聯模式 66
4.3.1各阻力及參數隨時間之變化關係 66
4.3.2過濾實驗後各阻力所佔比例 73
第五章 結論與建議 77
5.1結論 77
5.2建議 79
參考文獻 80
附錄 85
Aiken, G. R., McKnight, D. M., Wershaw, R. L. and MacCarthy, P. (1985) Humic substances in soil, sediment and water : geochemistry, isolation, and characterization. John Wiley & Sons, New York.
Aoustin, E., Schafer , A. I., Fane, A. G.. and Waite, T. D. (2001) Ultrafiltration of natural organic matter. Sep. Purif. Technol. 22-23, 63-78.
Barba, D., Evangelista, F., Wang, H. and Spera, D. (1997) The effects of osmotic pressure and fouling during a concentration process of BSA solutions by ultrafiltration. Desalination 114, 183-188.
Bian, R., Watanabe, Y., Tambo, N. and Ozawa, G. (1999) Removal of humic substances by UF and NF membrane systems, Wat. Sci. Tech. 40(9), 121-129.
Bowen, W. R., Calvo, J. I. and Hernandez, A. (1995) Steps of membrane blocking in flux decline during protein microfiltration. J. Membrane Sci. 101, 153-165.
Chen, Y., Senesi, N. and Schnitzer, M. (1977) Information provided on humic substances by E4/E6 Ratios. Soil Sci. Soc. Am. J. 41, 352-358.
Cheryan, M. (1998) Ultrafiltration and microfiltration handbook. Technomic Publishing Company, USA.
Chiang, B. H. and Cheryan, M. (1986) Ultrafiltration of skimmilk in hollow fibers. J. Food Sci. 51(2), 340-344.
Choo, K. H. and Lee, C. H. (1996) Membrane fouling mechanisms in the membrane-coubled anaerobic bioreactor. Wat. Res. 30(8), 1771-1780.
Duguet, J. P. and Mallevialle, J. (1998) Influence of natural organic matter on water treatment. Water Supply 16(1/2), 504-509.
Elimelech, M., Zhu, X., Childress, A. E. and Hong, S. (1997) Role of membrane surface morphology in colloidal fouling of cellulose acetate and composite aromatic polyamide reverse osmosis membranes, J. Membrane Sci. 127, 101-109.
Green, J. H. and Tylla, M. (1998) A comparison of ultrafiltration on various river waters. Desalination 119, 79-84.
Hermia, J. (1982) Constant pressure blocking filtration laws-application to power-law non-newtonian fluids. Trans. ICemE. 60, 183-187.
Ho, C. C. and Zydney, A. L. (2000) A combined pore blockage and cake filtration model for protein fouling during microfiltration. J. Colloid Interf. Sci. 232, 389-399.
Huber, S. A. and Fremmel, F. H. (1992) A new method for the characterization of organic carbon in aquatic systems. Intern. J. Environ. Anal. Chem. 49, 49-57.
Jiraratananon, R. and Chenechai, A. (1996) A study of fouling in the ultrafiltration of passion fruit juice. J. Membrane Sci. 111, 39-48.
Jones, K. L. and O’Melia, C. R. (2001) Ultrafiltration of protein and humic substances: effect of solution chemistry on fouling and flux decline. J. Membrane Sci. 193, 163-173.
Jonsson, C. and Jonsson, A. S. (1995) Influence of the membrane material on the adsorptive fouling of ultrafiltration membranes. J. Membrane Sci. 108, 79-87.
Jucker, C. and Clark, M. M. (1994) Adsorption of aquatic humic substances on hydrophobic ultrafiltration membranes. J. Membrane Sci. 97, 37-52.
Kulovaara, M., Metsamuuronen, S. and Nystrom, M. (1999) Effects of aquatic humic substances on a hydrophobic ultrafiltration membrane. Chemosphere 38(15), 3485-3496.
Lee, Y. and Clark, M. M. (1997) A numerical model of steady-state permeate flux during cross-flow ultrafiltration. Desalination 109, 241-251.
Lin, C. F., Huang, Y. J. and Hao, O. J. (1999) Ultrafiltration processes for removing humic substances: effect of molecular weight fractions and PAC treatment. Wat. Res. 33(5), 1252-1264.
Lin, C. F., Lin, T. Y. and Hao, O. J. (2000) Effects of humic substance characteristics on UF performance. Wat. Res. 34(4), 1097-1106.
Lin, C. F., Liu, S. H. and Hao, O. J. (2001) Effect of functional groups of humic substances on UF performance. Wat. Res. 35(10), 2395-2402.
Lu, X. Q., Vassallo, A. M. and Johnson, W. D. (1997) Thermal stability of humic substances and their metal forms: an investigation using FTIR emission spectroscopy, J. Anal. Appl. Pyrol. 43, 103-114.
Maartens, A., Swart, P. and Jacobs, E. P. (1999) Removal of natural organic matter by ultrafiltration: characterization, fouling and cleaning. Wat. Sci. Tech. 40(9), 113-120.
Magara, Y., Kunikane, S. and Itoh, M. (1998) Advanced membrane technology for application to water treatment. Wat. Sci. Tech. 37(10), 91-99.
Malgorzata, K. K., Katarzyna, M. N. and Tomasz, W. (1999) Analysis of membrane fouling in the treatment of water solutions containing humic acids and mineral salts. Desalination 126, 179-185.
McCarthy, A. A., Walsh, P.K. and Foley, G.. (2002) Experimental techniques for quantifying the cake mass, the cake and membrane resistances and the specific cake resistance during crossflow filtration of microbial suspensions. J. Membrane Sci. 201, 31-45.
Mignard, D. and Glass, D. H. (2001) Fouling during the cross-flow ultrafiltration of proteins : a mass-transfer model. J. Membrane Sci. 186, 133-143.
Mulder, M. (1996) Basic principles of membrane technology. Kluwer Academic Publishers.
Nakatsuka, S., Nakate, I. and Miyano, T. (1996) Drinking water treatment by using ultrafiltration hollow fiber membranes. Desalination 106, 55-61.
Newcombe, G., Drikas, M., Assemi, S. and Beckett, R. (1997) Influence of characteristic natural organic material on activated carbon adsorption: I. characterization of concentrated reservoir water. Wat. Res. 31(5), 965-972.
Nystrom, M., Ruohomaki, K. and Kaipia, L. (1996) Humic acids as a fouling agent in filtration. Desalination 106, 79-87.
Owen, G., Bandi, M., Howell, J. A. and Churchouse, S. J. (1995) Economic assessment of membrane processes for water and waste water treatment. J. Membrane Sci. 102, 77-91.
Pradanos, P., de Abajno, J., de la Campa, J. G.. and Hernadez, A. (1995) A comparative analysis of flux limit models for ultrafiltration membranes. J. Membrane Sci. 108, 129-142.
Ruohomaki, K., Vaisanen, P., Metsamuuronen S. and Kulovaara, M. (1998) Characterization and removal of humic substances in ultra- and nanofiltration. Desalination 118, 273-283.
Schafer, A. I., Fane, A. G.. and Waite, T. D. (2000) Fouling effects on rejection in the membrane filtration of natural waters. Desalination 131, 215-224.
Smeulders, D. E., Wilson, M. A. and Kannangara, G. S. K. (2001) Host-guest interactions in humic materials. Org. Geochem. 32, 1357-1371.
Stevenson F. J. (1985) Humus chemistry. John Wiley & Sons, New York.
Szaniawski, A. R. and Spencer, H. G. (1997) Effects of immobilized pectinase on the microfiltration of dilute pectin solutions by macroporous titania membranes : resistance model interpretation. J. Membrane Sci. 127, 69-76.
Tansel, B., Bao, W. Y. and Tansel, I. N. (2000) Characterization of fouling kinetics in ultrafiltration systems by resistances in series model. Desalination 129, 7-14.
Thurman, E. M. (1985) Organic geochemistry of natural water. Martinus Nijhoff/Dr. W. Junk Publishers, Dordrecht.
Vrijenhoek, E. M., Hong, S. and Elimelech, M. (2001) Influence of membrane surface properties on initial rate of colloidal fouling of reverse osmosis and nanofiltration membranes. J. Membrane Sci. 188, 115-128.
Wetterau, G. E., Clark, M. M. and Anselme, C. (1996) A dynamic model for predicting fouling effects during the ultrafiltration of a groundwater. J. Membrane Sci. 109, 185-204.
Wiesner, M. R., Hackney, J., Sethi, S., Jacangelo, J. G. and Laine J. M. (1994) Cost estimates for membrane filtration and conventional treatment. AWWA December, 33-41.
Yeh, H. M., Cheng, T. W. and Wu, H. H. (1998) Membrane ultrafiltration in hollow-fiber module with the consideration of pressure declination along the fibers. Sep. Purif. Technol. 13, 171-180.
Yeh, H. M. and Tsai, J. W. (1998) Membrane ultrafiltration in multipass hollow-fiber modules. J. Membrane Sci. 142, 61-73.
Yeh, H. M. and Wu, H. H. (1997) Membrane ultrafiltration in combined hollow-fiber module systems. J. Membrane Sci. 124, 93-105.
Yuan, W., Kocic, A., and Zydney, A. L. (2002) Analysis of humic acid fouling during microfiltration using a pore blockage-cake filtration model. J. Membrane Sci. 198, 51-62.
鄭東文,中空纖維薄膜超過濾之研究,國立台灣大學化學工程學研究所博士學論文,1992。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔