(3.238.186.43) 您好!臺灣時間:2021/02/25 02:31
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:林哲雄
研究生(外文):Che-Shung Lin
論文名稱:Melittin抑制鼷鼠黑色素瘤細胞B16F10的侵犯和轉移作用之研究
論文名稱(外文):Inhibitory effect of melittin of murine melanoma cell B16F10 on metastasis and invasion
指導教授:蕭水銀蕭水銀引用關係
指導教授(外文):Shoei-Yn Lin-Shiau
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:毒理學研究所
學門:醫藥衛生學門
學類:其他醫藥衛生學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:英文
論文頁數:120
中文關鍵詞:乳酸脫氫
外文關鍵詞:LDH
相關次數:
  • 被引用被引用:0
  • 點閱點閱:290
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:57
  • 收藏至我的研究室書目清單書目收藏:0
腫瘤的血管生成和轉移對於組織侵犯是一種相當重要的因素,對於癌症的治療成為一個引人注目的目標;Melittin是從西方蜜蜂的毒素中所分離出來的一種雙極性peptide,已經為人所知它具有很強的抗發炎和抗微生物的作用。首先;我們測試melittin在具有高度侵犯力的鼷鼠黑色素瘤細胞B16F10的體外試驗作用,Melittin對於B16F10細胞膜滲透性作用的調查乃藉由測試從細胞漏出的大分子和生化數值,我們發現melittin誘導葡萄糖(glucose)、鉀離子(K+)、磷(phosphorus)、乳酸脫氫(LDH)和胺基轉移(GOT and GPT)的釋放以及鈣離子的流入,而melittin對於細胞內的鈉離子(Na+)、氯離子(Cl-)、鎂離子(Mg2+)、澱粉(amylase)和肌酸激(creatine kinase)則無顯著影響。 Melittin的功能活性分析藉由監測細胞內鈣離子的流入以及對於BAPTA/AM,EGTA和TG的反應,當B16F10細胞受到melittin的刺激時會造成相當的鈣離子流入,B16F10細胞預先處理了BAPTA/AM,EGTA和TG會延遲melittin對細胞的裂解時間;在高度的劑量下,melittin 會造成B16F10細胞染色體去氧核糖核酸成碎片,細胞的凋亡和裂解。Melittin也被用來評估抑制B16F10細胞的侵犯力,我們結合了Matrigel outgrowth 和Boyden chamber分析的原理,利用侵犯抑制劑的三步驟監視方法,加入melittin 0.3或1 μM與控制組作比較,腫瘤細胞無法侵入到matrigel底部分別是控制組的2.4和2.3倍,而腫瘤細胞已經侵入到matrigel底部分別是控制組的80.67 ±1.54 % 和 72.67 ±1.33 %。
其次,我們測試melittin在B16F10細胞的體內試驗作用,我們測試melittin對於鼷鼠黑色素瘤細胞B16F10在鼷鼠肺部的轉移抑制作用,不同的melittin 給予方式(腹腔注射)發現非常有效地抑制黑色素瘤細胞B16F10在鼷鼠肺部的轉移,可藉由觀察肺部內腫瘤小結節數目的減少(14-86%)而知道,同樣的情形在皮下和腹腔的腫瘤生成分析中也可發現melittin減少了腫瘤小結節在鼷鼠皮下和腹腔的擴散和增生。為了研究melittin對於B16F10腫瘤細胞所誘導的血管生成作用,我們沿著鼷鼠腹部中線植入含有B16F10細胞的matrigel到鼷鼠皮下組織,接種後第九天測量matrigel所含的血紅素濃度,結果顯示接種後連續五天給予鼷鼠腹腔注射melittin 0.5 μg/g會降低matrigel內的血管生成能力。另外,在肺部、皮下和腹腔的腫瘤生成分析中,給予melittin治療會使含有轉移性腫瘤的鼷鼠其存活期增長。因為melittin本身具有毒性,所以測試melittin在鼷鼠體內的溶血活性和急毒性,結果顯示給予鼷鼠melittin 0.6 μg/g(實驗的最高劑量)有抑制腫瘤轉移和血管生成的作用,與沒有給予melittin的鼷鼠比較,此劑量亦不會影響鼷鼠體重、紅血球裂解和血清的生化值。
由以上結果推論,我們証實melittin它具有抑制腫瘤細胞的侵犯和血管生成的能力足以成為引人注意的抗癌藥物,結合更進一步地研究和傳統的細胞毒殺化學治療藥劑,或許Melittin可以証明能更有效地控制癌症的過程。

Tissue invasion is an important determinant of angiogenesis and metastasis of tumors and constitutes an attractive target for cancer therapy. Melittin, an amphiphilic peptide isolated from honeybee Apis mellifera, is known to provide strong anti-inflammatory and antimicrobial effect. First, we tested the effect of melittin on the highly invasive murine melanoma B16F10 cells in vitro. Effect of melittin on membrane permeability of B16F10 cells was investigated by measuring the leakage of macromolecules and biochemical data. We found that melittin induced the release of glucose, K+, phosphorus, LDH, GOT, GPT, and increased Ca2+ influx. No significant influence of melittin on the contents of Na+, Cl-, Mg2+, amylase and creatine kinase. Functional activity assays of melittin was conducted by monitoring intracellular calcium fluxes in response to BAPTA/AM, EGTA and TG. B16F10 cells exhibit robust intracellular Ca2+ fluxes when stimulated with melittin. Pretreatment with BAPTA/AM, EGTA and TG of B16F10 cells delayed lytic time by melittin. In the high dose, melittin cause DNA fragmented, cell apoptosis and lysis. Melittin was estimated in inhibitive effect of B16F10 cell invasion. We have combined the principles of the Matrigel outgrowth and the Boyden chamber assays in a three-step screen for invasion inhibitors. Addition of melittin 0.3 or 1 μM, cells that failed to invade to Matrigel were 2.4 and 2.3 fold respectively compared with control, and cell invaded to Matrigel were 80.67 ±1.54 % and 72.67 ±1.33 % respectively compared with control.
Second , we tested the effect of melittin on the B16F10 cells in vivo. We examined the effect of melittin on the inhibition of lung metastasis induced by murine melanoma cells B16F10 in mice. Various administrations (i.p.) of melittin were found effectively to inhibit the lung metastasis as seen by the reduction in the number of lung tumor nodules (14-86%). Similar circumstances were found that melittin decreased dissemination and proliferation of tumor nodules in subcutaneous and abdominal tumorigenesis assay. To study the effect of melittin on B16F10 tumor-induced angiogenesis, we implanted Matrigel with B16F10 cells to abdominal s.c. tissue of mice along the peritoneal midline. Hemoglobin content of matrigel was measured after 9 days inoculation. The results obtained showed that the mice treated with melittin 0.5 μg/g (i.p. once everyday for 5 consecutive days) decreased angiogenic potential of Matrigel. In addition, life span of metastatic tumor bearing mice treated with melittin were also found to be increased in all models of lung, subcutaneous and abdominal tumorigenesis assay. Because melittin itself possessed toxicity, so we tested hemolytic activity and acute toxicity of melittin in vivo. It reveals give dose mice were administrated melittin 0.6 μg/g effect in inhibiting the metastasis and angiogenesis but had no significant influence on body weight, erythrocyte lysis and biochemical data of serum compared with the control mice without melittin administration.
In conclusion, we have demonstrated that melittin that has the potential for inhibiting tumor cell invasion and angiogenesis is attractive candidates as an anticancer agent. It merits for further study that in combination with the conventional cytotoxic chemotherapy agents, it may prove to be efficacious in controlling cancer progression.

目錄
Abbreviations……………………………………………………………1
中文摘要………………………………………………………………...2
Abstract…………………………………………………………………..6
Introduction……………………………………………………………..10
Materials and Methods………………………………………………….22
Results…………………………………………………………………..34
Discussion………………………………………………………………47
Tables……………………………………………………………………56
Figures…………………………………………………………………..65
References……………………………………………………………..109

Abedi H, Zachary I. Vascular endothelial growth factor stimulates tyrosine phosphorylation and recruitment to new focal adhesions of focal adhesion kinase and paxillin in endothelial cells. J Biol Chem 272: 15442-15451, 1997.
Aiello LP, Bursell SE, Clermont A, Duh E, Ishii H, Takagi C, Mori F, Ciulla TA, Ways K, Jirousek M, Smith LE, King GL. Vascular endothelial growth factor-induced retinal permeability is mediated by protein kinase C in vivo and suppressed by an orally effective beta-isoform-selective inhibitor. Diabetes 46: 1473-80,1997.
Alcazar A, Martin E, Lopez-Fando J, Salinas M. An improved purification procedure and properties of casein kinase II from brain. Neurochem Res 13: 829-836, 1988.
Alessi DR. The protein kinase C inhibitors Ro 318220 and GF 109203X are equally potent inhibitors of MAPKAP kinase-1b (RSK-2) and p70 S6 kinase. FEBS Lett 402: 121-123, 1997.
Anand-Apte B, Bao L, Smith R. A review of tissue inhibitor of metalloproteinases-3 (TIMP-3) and experimental analysis of its effect on primary tumor growth. Biochem Cell Biol 74: 853-862, 1996.
Arsenio P, Massimiliano B, Alberto L, Roberto B. Cyclosporin A, but not FK506, increases and inhibits proliferation of pituitary corticotrope tumor cells. Life Sci 64: 837-846, 1999.
Bae SN, Arand G, Azzam H, Pavasant P, Torri J, Frandsen TL, Thompson EW. Molecular and cellular analysis of basement membrane invasion by human breast cancer cells in Matrigel-based in vitro assays. Breast Cancer Res Treat 24: 241-255, 1993.
Bafetti LM, Young TN, Itoh Y, Stack MS. Intact vitronectin induces matrix metalloproteinase-2 and tissue inhibitor of metalloproteinases-2 expression and enhanced cellular invasion by melanoma cells. J Biol Chem 273: 143-149, 1998.
Baron-Delage S, Cherqui G. Protein kinase C and tumorigenic potential. Bull Cancer 84: 829-832, 1997.
Baker KJ, East JM, Lee AG. Mechanism of inhibition of the Ca2+-ATPase by melittin. Biochemistry 34: 3596-3604, 1995.
Basu A. The involvement of novel protein kinase C isozymes in influencing sensitivity of breast cancer MCF-7 cells to tumor necrosis factor-α. Mol Pharm 53: 105-111, 1998.
Becker D, Meier CB, Herlyn M. Proliferation of human malignant melanomas is inhibited by antisense oligodeoxynucleotides targeted against basic fibroblast growth factor. EMBO J 8: 3685-3691, 1989.
Becker D, Lee PL, Rodeck U, Herlyn M. Inhibition of the fibroblast growth factor receptor 1 (FGFR-1) gene in human melanocytes and malignant melanomas leads to inhibition of proliferation and signs indicative of differentiation. Oncogene 7: 2303-2313, 1992.
Bergers G, Javaherian K, Lo KM, Folkman J, Hanahan D. Effects of angiogenesis inhibitors on multistage carcinogenesis in mice. Science (Wash. DC) 284: 808-812, 1999.
Bomalaski JS, Baker D, Resurreccion NV, Clark MA. Rheumatoid arthritis synovial fluid phospholipase A2 activating protein (PLAP) stimulates human neutrophil degranulation and superoxide ion production. Agents & Actions 27: 425-427, 1989 .
Carmeliet P, Jain RK. Angiogenesis in cancer and other diseases. Nature (Lond.) 407: 249-257, 2000.
Carol BM, Gwendolyn MM, Mark BK, Robert JK, Marc S, Channing JD, Ian PW. The thrombin receptor, PAR-1, cause transformation by activation of Rho-mediated signaling pathways. Oncogene 20: 1953-1963, 2001.
Christofori G, Semb H. The role of the cell-adhesion molecule E-cadherin as a tumour-suppressor gene. Trends Biochem Sci 24: 73-76, 1999.
Cuppoletti J, Blumenthal KM, Malinowska DH. Melittin inhibition of the gastric (H+ - K+) ATPase and photoaffinity labeling with and 2 over black square]; [1 and 2 over black square]25I] azidosalicylyl melittin. Arch Biochem Biophys 275: 263-270, 1989.
Degrado WF, Musso GF, Lieber M, Kaiser ET, Kezdy FJ. Kinetics and mechanism of hemolysis induced by melittin and by a synthetic melittin analogue. Biophys J 37: 329-338, 1982.
Dempsey CE. The actions of melittin on membranes. Biochem Biophys Acta 1031: 143-161,1990.
Dufourc EJ, Smith ICP, Dufourcq J. Molecular details of melittin-induced lysis of phospholipid membranes as revealed by deuterium and phosphorus NMR. Biochemistry 25: 6448-6455, 1986.
Eisenthal A, Cameron RB, Uppenkamp I, Rosenberg SA. Effect of combined therapy with lymphokine activated killer cells, interleukin 2 and specific monoclonal antibody on established B16 melanoma lung metastasis. Cancer Res 48: 7140-7145, 1988
Fidler IJ. Selection of successive tumor lines for metastasis. Nature (London) 242: 148-149, 1973.
Fidler IJ, Nicolson GL. Organ selectivity for implantation survival and growth of B16 melanoma variant tumor lines. J Natl Cancer Inst 57: 1199-1202, 1976.
Fisher DE. Apoptosis in cancer therapy: crossing the threshold. Cell 78: 539-542, 1994.
Fox SB, Westwood M, Moghaddam A. The angiogenic factor platelet-derived endothelial cell growth factor/thymidine phosphorylase is up-regulated in breast cancer epithelium and endothelium. Br J Cancer 73: 275-280, 1996.
Fukumura D, Yuan F, Monsky WL. Effect of host microenvironment on the micro-circulation of human colon adenocarcinoma. Am J Pathol 151: 679-688, 1997.
Fukushima N, Kohno M, Kato T, Kawamoto S, Okuda K, Misu Y, Ueda H. Melittin, a metabostatic peptide inhibiting Gs activity. Peptides 19 : 811-819, 1998.
Graeven U, Fiedler W, Karpinski S, Ergun S, Kilic N, Rodeck U, Schmiegel W, Hossfeld DK. Melanoma-associated expression of vascular endothelial growth factor and its receptors FLT-1 and KDR. J Cancer Res Clin Oncol 125: 621-629, 1999.
Graeven U, Rodeck U, Karpinski S, Andre N, Schmiegel W. Expression patterns of placenta growth factor-1 in human melanocytic cell lines. J Investig Dermatol 115: 118-123, 2000.
Griffiths L, Dachs G, Bicknell R. The Influence of Oxygen tension and pH on the expression of platelet-derived endothelial cell growth factor/thymidine phosphorylase in human breast tumor cells grown in vitro and in vivo. Cancer Res 57: 570-572, 1997.
Groden GL, Guan Z, Stroke BT. Determination of fura-2 dissociation contants following adjustment of the apparent Ca-EGTA associationconstant for temperature and ionic strength. Cell Calcium 12: 279-287, 1991.
Grynkiewicz G, Poenie M, Tsien RY. A new gengeration of Ca2+ indicators with greatly improved fluorescence properties. J Biol Chem 260: 3340-3450, 1985.
Haase I. Czarnetzki BM, Rosenbach T. Thrombin and melittin activate phospholipase C in human HaCaT keratinocytes. Exp Dermatol 5: 84-88, 1996.
Hanahan D, Folkman J. Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis. Cell 86: 353-364, 1996.
Hanahan D, Weinberg RA. The hallmarks of cancer. Cell 100: 57-70, 2000.
Herlyn D, Iliopoulos D, Jensen PJ, Parmiter A, Baird J, Hotta H, Adachi K, Ross AH, Jambrosic J, Koprowski H. In vitro properties of human melanoma cells metastatic in nude mice. Cancer Res 50: 2296-2302, 1990.
Herlyn M, Graeven U, Speicher D, Sela BA, Bennicelli J L, Kath R, Guerry D. Characterization of tenascin secreted by human melanoma cells. Cancer Res 51: 4853-4858, 1991.
Hobson B, Denekamp J. Endothelial proliferation in tumours and normal tissues: continuous labelling studies. Br J Cancer 49: 405-413, 1984.
Holmgren L, O’Reilly MS, Folkman J. Dormancy of micrometastases: balanced proliferation and apoptosis in the presence of angiogenesis suppression. Nat Med 1: 149-153, 1995.
Houston ME, Kondejewski LH, Karunaratne DN, Gough M, Fidai S, Hodges RS, Hancock RE. Influence of preformed alpha-helix and alpha-helix induction on the activity of cationic antimicrobial peptides. J Peptide Res 52: 81-88, 1998.
Hughes S, Yang H, Chan-Ling T. Vascularization of the human fetal retina: roles of vasculogenesis and angiogenesis. Invest Ophthalmol Vis Sci 41: 1217-1228, 2000.
Iruela-Arispe ML, Dvorak HF. Angiogenesis: a dynamic balance of stimulators and inhibitors. Thromb Haemost 78: 672-677, 1997.
Jain RK. Delivery of molecular and cellular medicine to solid tumors. Microcirculation 4: 1- 23, 1997.
Jitesh PJ, Susan S, Nancy S, Kurt B, Shivendra VS, Vicram G, Arthur K. Metastasis of B16f10 mouse melanoma inhibited by lovastatin, an inhibitor of cholesterol biosynthesis. Invasion and Metastasis 13: 314-324, 1993.
Kahari VM, Saarialho-Kere U. Matrix metalloproteinases and their inhibitors in tumor growth and invasion. Ann Med 31: 34-45, 1999.
Kajita S, Iizuka H. Melittin-induced alteration of epidermal adenylate cyclase responses. Acta Dermato Venereol 67: 295-300, 1987.
Kang ES, Olson G, Jabbour JT, Solomon SS, Heimberg M, Sabesin S, Griffith JF. Development of encephalopathic features similar to Reye syndrome in rabbits. Proceedings of the National Academy of Sciences of the United States of America 81: 6169-6173, 1984 .
Kaufmann SH. Induction of endonucleolytic DNA cleavage in human acute myelogenous leukemia cells by etoposide, camptothecin, and other cytotoxic anticancer drugs: a cautionary note. Cancer Res 49: 5870-5878, 1989.
Kiesel L, Rabe T, Hauser G, Przylipiak A, Jadali F, Runnebaum B. Stimulation of luteinizing hormone release by melittin and phospholipase A2 in rat pituitary cells. Mol Cell Endocrinol 51: 1-6, 1987.
Kind LS, Ramaika C, Allaway E. Antigenic, adjuvant and permeability enhancing properties of melittin in mice. Allergy 36: 155-160, 1981 .
Knepel W, Gerhards C. Stimulation by melittin of adrenocorticotropin and beta-endorphin release from rat adenohypophysis in vitro. Prostaglandins 33: 479-490, 1987.
Knutson JR, Iida J, Fields GB, McCarthy JB. CD44/chondroitin sulfate proteoglycan and α2ß1 integrin mediate human melanoma cell migration on type IV collagen and invasion of basement membranes. Mol Biol Cell 7: 383-396, 1996.
Koburova KL, Michailova SG, Shkenderov SV. Further investigation on the antiinflammatory properties of adolapin--bee venom polypeptide. Acta Physiol Pharmacol Bulgarica 11: 50-55, 1985.
Kreisle RA, Stebler BA, Ershler WB. Effect of host age on tumor-associated angiogenesis in mice. J Natl Cancer Inst 82: 44-47, 1990.
Lakshmi K, Ahou M, Francine F, Athan K. Signaling from protease-activated receptor-1 inhibits migration and invasion of breast cancer cells. Cancer Res 61: 5933-5940, 2001.
Lata GM, Ramadasan K, Girija K. Inhibition of lung metastasis in mice induced by B16F10 melanoma cells by polyphenolic compounds. Cancer Lett 95: 221-225, 1995.
Lee KM, Kim DH, Lee YH, Choi BS, Chung JH, Lee BL. Antifungal activities of recombinant antifungal protein by conjugation with polyethylene glycol. Mol Cells 9: 410-416, 1999.
Lee SY, Yeo EJ, Choi MU. Phospholipase D activity in L1210 cells: a model for oleate-activated phospholipase D in intact mammalian cells. Biochem Biophys Res Comm 244: 825-831, 1998.
Lee SY, Park HS, Lee SJ, Choi MU. Melittin exerts multiple effects on the release of free fatty acids from L1210 cells: lack of selective activation of phospholipase A2 by melittin. Arc Biochem Biophys 389: 57-67, 2001.
Less JR, Posner MC, Skalak TC. Geometric resistance and microvascular network architecture of human colorectal carcinoma. Microcirculation 4: 25-33, 1997.
Lin CW, Yao CJ, Ko TS, Lin-Shiau SY. Measurement of intracellular ion dynamics with microfluorescent ratio imaging system. Biomed Eng Appl Basis Comm 10: 131-138, 1998.
Liu SY, Tappia PS, Dai J, Williams SA. Panagia V. Phospholipase A2-mediated activation of phospholipase D in rat heart sarcolemma. J Mol Cell Cardiol 30: 1203-1214, 1998.
Lo WC, Henk WG, Enright FM. Light-microscopic studies of 3T3 cell plasma membrane alterations mediated by melittin. Toxicon 35: 15-26, 1997.
Matsuzaki K, Yoneyama S, Miyajima K. Pore formation and translocation of melittin. Biophys J 73: 831-838, 1997.
Mau SE, Vilhardt H. Cross talk between substance P and melittin-activated cellular signaling pathways in rat lactotroph-enriched cell cultures. J Neurochem 69: 762-772, 1997 .
Montgomery AM, De Clerck YA, Langley KE, Reisfeld RA, Mueller BM. Melanoma-mediated dissolution of extracellular matrix: contribution of urokinase-dependent and metalloproteinase-dependent proteolytic pathways. Cancer Res 53: 693-700, 1993.
Mosmans T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotovicity assays. J Immunal Met 65: 55-63, 1983.
Murali DB. Understanding cancer metastasis. Cancer 97: 1821-1829, 2002.
Nguyen M. Angiogenic factors as tumor markers. Invest New Drugs 15: 29-37, 1997.
Nierodzik ML, Chen K, Takeshita K, Li JJ, Huang YQ, Feng XS, D’Andrea MR, Andrade-Gordon P, Karpatkin S. Protease-activated receptor 1 (PAR-1) is required and rate-limiting for thrombin-enhanced experimental pulmonary metastasis. Blood 92: 3694-3700, 1998.
Nip J, Rabbani SA, Shibata HR, Brodt P. Coordinated expression of the vitronectin receptor and the urokinase-type plasminogen activator receptor in metastatic melanoma cells. J Clin Investig 95: 2096-2103, 1995.
Noe V, Fingleton B, Jacobs K. Release of an invasion promoter E-cadherin fragment by matrilysin and stromelysin-1. J Cell Sci 114: 111-118, 2001.
Norrby K. Angiogenesis: new aspects relating to its initiation and control. APMIS 105: 417-437, 1997.
O'Brien TS, Fox SB, Dickinson AJ. Expression of the angiogenic factor thymidine phosphorylase/platelet-derived endothelial cell growth factor in primary bladder cancers. Cancer Res 56: 4799-4804, 1996.
Oren Z, Shai Y. Selective lysis of bacteria but not mammalian cells by diastereomers of melittin: structure-function study. Biochemistry 36: 1826-1835, 1997.
Passaniti A, Taylor RM, Pili R, Guo Y, Long PV, Haney JA, Pauly RR, Grant DS, Martin GR. A simple, quantitative method for assessing angiogenesis and antiangiogenic agents using reconstituted basement membrane, heparin, and fibroblast growth factor. Lab Investig 67: 519-528, 1992.
Perotti M, Toddei F, Mirabelli F, Vairetti M, Bellomo G, McConkey D, Orrenius S. FEBS Lett 259: 331-334, 1990.
Pili R, Guo Y, Chang J, Nakanishi H, Martin GR, Passaniti A. Altered angiogenesis underlying age-dependent changes in tumor growth. J Natl Cancer Inst 86: 1303-1314, 1994.
Pluda JM. Tumor-associated angiogenesis: mechanisms, clinical implications, and therapeutic strategies. Semin Oncol 24: 203-218, 1997.
Price JT, Thompson EW. Models for studying cellular invasion of basement membranes. Methods Mol Biol 129: 231-250, 1999.
Profet M. The function of allergy: immunological defense against toxins. Quarterly Rev Biol 66: 23-62, 1991.
Rao NM. Differential susceptibility of phosphatidylcholine small unilamellar vesicles to phospholipases A2, C and D in the presence of membrane active peptides. Biochem Biophys Res Comm 182: 682-688, 1992 .
Rex S. Pore formation induced by the peptide melittin in different lipid vesicle membranes. Biophys Chem 58: 75-85, 1996.
Rie SK, Hiroyuki S, Shun’ichiro T. A variant actin (βm) reduces metastasis of mouse B16 melanoma. Int J Cancer 56: 689-697, 1994
Rodeck U, Melber K, Kath R, Menssen HD, Varello M, Atkinson B, Herlyn M. Constitutive expression of multiple growth factor genes by melanoma cells but not normal melanocytes. J Investig Dermatol 97: 20-26, 1991.
Rom EE, Francis C, Szoka JR. Liposome-encapsulated Doxorubicin Targeted to CD44: A Strategy to Kill CD44 overexpressing Tumor Cells. Cancer Res 61: 2592-2601, 2001
Saini SS, Chopra AK, Peterson JW. Melittin activates endogenous phospholipase D during cytolysis of human monocytic leukemia cells. Toxicon 37: 1605-1619, 1999 .
Shaposhnikova VV, Egorova MV, Kudryavtsev AA, Levitman MK, Korystov YN. The effect of melittin on proliferation and death of thymocytes. FEBS Lett 410: 285-288, 1997.
Shin SY, Lee MK, Kim KL, Hahm KS. Structure- antitumor and hemolytic activity relationships of synthetic peptides derived from cecropin A-magainin 2 and cecropin A-melittin hybrid peptides. J Peptide Res 50: 279-285, 1997.
Shin SY, Kang JH, Hahm KS. Structure-antibacterial, antitumor and hemolytic activity relationships of cecropin A-magainin 2 and cecropin A-melittin hybrid peptides. J Peptide Res 53: 82-90, 1999 .
Shinpei O, Emil M, Dinesh KS, Klaus A. Interaction of melittin with lipid membranes. Biochim et Biophys Acta 1194: 223-232, 1994.
Silletti S, Kessler T, Goldberg J, Boger DL, Cheresh DA. Disruption of matrix metalloproteinase 2 binding to integrin alpha vbeta 3 by an organic molecule inhibits angiogenesis and tumor growth in vivo. Proc Natl Acad Sci USA 98: 119-124, 2001.
Singh RK, Fidler IJ. Regulation of tumor angiogenesis by organ-specific cytokines. Curr Top Microbiol Immunol 213: 1-11, 1996.
Somerfield SD, Stach JL, Mraz C, Gervais F, Skamene E. Bee venom inhibits superoxide production by human neutrophils. Inflammation 8: 385-391, 1984 .
Sporn MB. The war on cancer. Lancet 347: 1377-1381, 1996.
Takahashi K, Eto H, Tanabe KK. Involvement of CD44 in matrix metalloproteinase-2 regulation in human melanoma cells. Int J Cancer 80: 387-395, 1999.
Takebayashi Y, Akiyama S, Akiba S. Clinicopathologic and prognostic significance of an angiogenic factor, thymidine phosphorylase, in human colorectal carcinoma. J Natl Cancer Inst 88: 1110-1117, 1996.
Takebayashi Y, Yamada K, Miyadera K. The activity and expression of thymidine phosphorylase in human solid tumours. Eur J Cancer 32A: 1227-1232, 1996.
Teicher BA. A systems approach to cancer therapy. Cancer Metastasis Rev 15: 247-272, 1996.
Terwilliger TC, Eisenberg D. The structure of melittin. II. Interpretation of the structure. J Biol Chem 257: 6016-6022, 1982.
Toi M, Taniguchi T, Yamamoto Y. Clinical significance of the determination of angiogenic factors. Eur J Cancer 32A: 2513-2519, 1996.
Tosteson MT, Holmes SJ, Razin M, Tosteson DC. Permeation of ions in membranes. J Membr Biol 87: 35-44, 1985.
Vento R, D’Alessandro N, Giuliano M, Lauricella M, Carabillo M, Tesoriere G.
Induction of Apoptosis by Arachidonic Acid in Human Retinoblastoma Y79 Cells: Involvement of Oxidative Stress. Exp Eye Res 70: 503-517, 2000.
Vries TJ, Kitson JL, Silvers WK, Mintz B. Expression of plasminogen activators and plasminogen activator inhibitors in cutaneous melanomas of transgenic melanoma-susceptible mice. Cancer Res 55: 4681-4687, 1995.
Westermark B, Johnsson A, Paulsson Y, Betsholtz C, Heldin CH, Herlyn M, Rodeck U, Koprowski H. Human melanoma cell lines of primary and metastatic origin express the genes encoding the chains of platelet-derived growth factor (PDGF) and produce a PDGF-like growth factor. Proc Natl Acad Sci USA 83: 7197-7200, 1986.
Wright SD, Ramos RA, Tobias PS, Ulevitch RJ, Mathison JC. CD14, a receptor for complexes of lipopolysaccharide (LPS) and LPS binding protein. Science 249: 1431-1433, 1990.
Wyke JA. Overview-burgeoning promise in metastasis research. Eur J Cancer 36: 1589-1594, 2000.
Yancopoulos GD, Davis S, Gale NW, Rudge JS, Wiegand SJ, Holash J. Vascular-specific growth factors and blood vessel formation. Nature 407: 242-248, 2000.
Yan GM, Irwin RP, Lin SZ, Weller M, Wood KA, Paul SM. Diphenylhydantoin induces apoptotic cell death of cultured rat cerebellar granule cells. J Pharmacol Exp Ther 274: 983-990, 1995.
Yoshiji H, Harris S, Thorgeirsson U. Vascular endothelial growth factor is essential for initial but not continued in vivo growth of human breast carcinoma cells. Cancer Res 57: 3924-3928, 1997.
Zain J, Huang YQ, Feng XS, Nierodzik ML, Li JJ, Karpatkin S. Concentration-dependent dual effect of thrombin on impaired growth/apoptosis or mitogenesis in tumor cells. Blood 95: 3133-3138, 2000.
Ziai MR, Russek S, Wang HC, Beer B, Blume AJ. Mast cell degranulating peptide: a multi-functional neurotoxin. J Pharm Pharmacol 42: 457-461, 1990.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔