(44.192.112.123) 您好!臺灣時間:2021/03/09 00:23
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:李旺祚
研究生(外文):Wang-Tso Lee
論文名稱:粒線體功能異常對神經元的影響和相關的神經保護策略
論文名稱(外文):The effect of mitochondrial dysfunction on neurons and its relevant neuroprotective strategies
指導教授:沈友仁沈友仁引用關係尹相姝尹相姝引用關係
學位類別:博士
校院名稱:國立臺灣大學
系所名稱:臨床醫學研究所
學門:醫藥衛生學門
學類:醫學學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:149
中文關鍵詞:3-nitropropionic acid細胞凋亡細胞壞死核磁共振質譜核磁共振影像NMDA受體鈣離子粒線體
相關次數:
  • 被引用被引用:0
  • 點閱點閱:353
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
粒線體在細胞的代謝和存活上扮演一個很重要的角色,也因此粒線體的功能異常會導致細胞的死亡。從過去的研究顯示,許多人類的神經退化性疾病,例如Huntington病和粒線體腦病變等都與神經細胞的氧化磷酸化異常有關。然而造成這些神經細胞死亡的原因並不清楚。為了更深入探討線體功能異常時神經細胞死亡的機轉,我們使用一種粒線體毒物3-nitropropionic acid (3-NP)來研究粒線體功能異常所致腦病變的致病機轉。
3-NP本身為粒線體呼吸鏈第二複合體succinate dehydrogenase (SDH)的抑制劑。SDH本身也是Krebs循環的一個成份。動物實驗中發現,3-NP在大鼠和非人類的哺乳動物可造成動物行為的異常和選擇性的紋狀體病變,和人類的Huntington病相同。因此,我們希望藉由3-NP的動物模式來研究神經退化性疾病神經細胞死亡的機轉。由於過去的研究大多侷限於組織學或體外神經細胞培養的研究,所以首先我們希望建立一活體研究的動物模式。我們利用核磁共振影像和質譜的方法來追蹤注射3-NP所產生的腦病變。我們將2個月大Sprague-Dawley公鼠分為五組(各組n=10),除第一組注射生理食鹽水為控制組外,第二至五組皆注射3-NP(15 mg/kg/d)連續五天。第三和四組除3-NP外另外注射Lamotrigine (第三組,10 mg/kg/d;第四組,20 mg/kg/d)而第五組則另外注射MK-801(2 mg/kg/d)。我們除每天觀察動物的行為改變以外,並於第六天以核磁共振影像(T2 圖譜)和活體質子磁共振質譜來評量鼠腦病變的大小和代謝物的變化。結果我們發現,連續注射3-NP的公鼠在第二天或第三天便開始出現典型的姿態障礙或後肢癱瘓的現象。在第六天10隻單純注射3-NP的大鼠中有9隻產生第4度或第5度的行為異常,亦即已四肢癱瘓無法行動,甚至倒在地上。相對的,同時注射3-NP和Lamotrigine 10 mg/kg/d的大鼠則除了兩隻產生輕微的神經障礙(第1度)外,其它接受3-NP和Lamotrigine或MK-801注射的大鼠,都沒有顯著的神經異常。磁共振影像和活體質子磁共振質譜的檢查也得到類似的結果。連續注射3-NP 5天的大鼠產生了明顯的選擇性紋狀體和海馬迴病變。T2 圖譜紋狀體部位的T2 值由原來的61.79 ±0.50(平均值±標準誤)增加到107.28 ± 28.12;而海馬迴的T2 值由64.40 ± 1.47增加到97.88 ± 19.22。但是皮質部位的T2 值則沒有改變,視丘部位也只有一隻大鼠產生輕微的病變,這與人類的Huntington病極為相似。質子磁共振質譜上腦代謝物的改變也反應出這個事實。注射3-NP 5天後磁共振質譜上,紋狀體部位N-acetylaspartate (NAA)/Creatine (Cr)的比值明顯由1.327 ± 0.066 (平均值±標準誤)減少到0.923 ±0.137,表示紋狀體部位的神經細胞部份死亡或功能異常。除此之外,紋狀體部位也出現一Lactate的波峰,顯示出粒線體的氧化磷酸化受到影響。這些T2 圖譜上的病變和代謝物的變化與大鼠產生的行為改變有很好的相關。當我們除3-NP外再同時注射Lamotrigine或MK-801時,除了前述的行為變化消失了,紋狀體和海馬迴的病變也減輕,且NAA/Cr的比值也接近正常值,而Lactate波峰也消失。這表示紋狀體神經細胞的功能因Lamotrigine和MK-801的治療而得到明顯改善。有趣的是高劑量Lamotrigine明顯比低劑量提供更好的保護作用,甚至比MK-801的效果還好。由這些研究的結果顯示核磁共振影像和活體磁共振質譜的方法可有效的用來追蹤和評估3-NP所引起的傷害和代謝物的改變,因此是一個很好的3-NP活體研究的動物模式。由於MK-801是NMDA受體的拮抗劑,而Lamotrigine本身可抑制突觸前glutamate的釋放,因此從它們所提供的保護作用可證明3-NP的神經毒性主要是透過glutamate受體,尤其是NMDA受體的活化來進行。
接著我們希望更進一步探討3-NP所導致的腦病變與代謝物變化的關係。結果在靜脈注射單劑的3-NP (30 mg/kg)以後, Succinate/Cr和Lactate/Cr的比值逐漸增加。相較於控制組,3-NP組的NAA/Cr 比值也由原來的1.137減少到135分時的0.974 (95% C.I. = 0.887-1.061),並於195分降到最低點。令人感興趣的是在注射3-NP以後,當NNA的波峰慢慢下降時在其右側逐漸出現一小的波峰與其重疊在一起。我們利用體外質子磁共振質譜的方法證實這個小波峰便是acetate。Acetate的變化比Lactate和NAA的變化更早發生,在注射3-NP後75分便產生統計上的意義,並在165分時達最高值(平均值0.369;95 %C.I. = 0.309-0.430)。我們也同時利用擴散加權造影(diffusion-weighted image)的方法追蹤靜脈注射3-NP以後的腦病變。結果發現大鼠紋狀體的變化在3-NP注射後的145分鐘才開始出現顯著的差異,此約相當於磁共振質譜上NAA開始減少的時間。因此,注射3-NP以後腦內紋狀體代謝物的改變比影像的變化更早發生。研究中我們發現的Acetate的增加可能來自於3-NP毒性所導致的脂肪酸崩解,SDH的抑制或可能來自NAA的水解。所增加的Acetate可提供Acetyl基作為神經細胞毒性傷害時細胞膜的修復之用。因此,Acetate的增加可作為3-NP導致細胞傷害的最早證據。
我們接著希望更進一步了解3-NP對神經細胞的影響。我們利用一由NT-2細胞分化而來的人類神經細胞NT2-N細胞來作研究。當我們以3-NP處理NT2-N細胞時,NT2-N細胞產生兩種不同的死亡形式,亦即細胞凋亡和細胞壞死。當3-NP處理的時間越久時,NT2-N細胞發生細胞凋亡的比例越高。而當3-NP濃度的增加,發生細胞壞死的比例也增加。NT2-N細胞死亡的型態與細胞ATP的含量有關。高濃度的3-NP所造成的ATP減少較快且較嚴重,主要引起細胞壞死;而低濃度(0.1 mM)的3-NP所引起的ATP 減少較輕微,所以主要以細胞凋亡為主。當我們同時加入MK-801 10 µM處理時,在48小時後,細胞內ATP的含量由單純只加3-NP時的25 ± 4%回升到80 ± 2%(n=10)。由此證明3-NP所導致的細胞內ATP含量的減少只部份因3-NP抑制SDH所造成,而主要還是導因於NMDA受體的活化所造成的結果。
由我們活體動物的研究已發現,NMDA受體拮抗劑MK-801可減輕3-NP的毒性傷害。在NT2-N細胞我們也得到相同的結論,雖然培養液內glutamate的濃度並沒有增加,1 mM 3-NP處理48小時所引起的細胞死亡可顯著地被MK-801所減輕。相對地,非NMDA受體拮抗劑如CNQX或L型鈣離子通道的拮抗劑Nifedipine所提供的保護作用則較小。顯示出NMDA受體的活化在NT2-N細胞的死亡中比非NMDA受體的活化來得重要。除了這些藥物外,許多藥物也對這種NT2-N細胞的死亡提供保護作用。例如propyl gallate這種抗氧化劑便可減少3-NP所致LDH的釋放達44 ± 4%(n=8);這表示自由基過度製造也是造成NT2-N細胞死亡的原因之一。同樣的道理,Bongkrekic acid和cyclosporin A這兩種藥皆可抑制粒線體通透性轉換(mitochondrial permeability transition),也同樣明顯減少了3-NP所造成的細胞死亡,證明粒線體通透性轉換在3-NP所致的細胞死亡上也扮演重要的角色。另外,有趣的是,一種可抑制內質網鈣離子釋放的藥xestospongin C也提供了很好的保護作用。這表示3-NP造成NT2-N細胞死亡的機轉是多方面的。
由於細胞內鈣離子濃度([Ca2+]ί)的過度增加與NMDA受體活化所引起的神經毒性有關,我們接著探討3-NP對NT2-N細胞內[Ca2+]ί調控的影響。當我們加入1 mM 3-NP以後,NT2-N細胞的[Ca2+]ί會由原來的48 ± 2nM增加到2小時後的140 ± 12nM。如果我們同時加入MK-801則[Ca2+]ί的增加幅度明顯減慢,但是如果我們同時再加入Nifedipine,[Ca2+]ί增加的速度並沒有進一步減少,證明NMDA受體所形成的通道是造成[Ca2+]ί增加的主要管道。
由於xestospongin C也提供保護作用,因此我們接著探討細胞內鈣離子的增加是否與細胞內原有的鈣離子貯積有關。當我們在無Ca2+的溶液內加入1 mM 3-NP時,最初幾分內[Ca2+]ί增加的情形與含Ca2+溶液中的情形相同。但當時間更久,[Ca2+]ί增加的速度便減慢,這證明加入3-NP後剛開始幾分鐘 [Ca2+]ί增加主要來自於細胞內Ca2+貯積(從內質網或粒線體)的釋放,但細胞外Ca2+的內流對維持[Ca2+]ί的持續增加十分重要。當我們加入xestospongin C和dantrolene抑制內質網Ca2+的釋放,則最初幾分鐘內[Ca2+]ί的增加也被抑制。由這些結果證明,內質網內鈣離子的釋放才是造成最初[Ca2+]ί增加的主因。這一點在過去的研究是未曾被報告的。
我們接著探討這種[Ca2+]ί不平衡的現象是否會持續到24或48小時。結果我們發現只有分別17%和25%的細胞其[Ca2+]ί在24和48小時後維持在100 nM以上。如果除了3-NP外,再同時加上MK-801或xestospongin C則[Ca2+]ί在100 nM以上的細胞會明顯更少。如果除了MK-801再同時加上xestospongin C或CNQX,則[Ca2+]ί大於100 nM的細胞會比單單加MK-801時更少。因此, NT2-N細胞[Ca2+]ί的失去均衡與細胞外Ca2+內流和細胞內Ca2+的釋放有關,而[Ca2+]ί的調控出了問題是造成NT2-N死亡的一個重要因素。這是第一個以人類神經細胞為主的3-NP研究模式,也因此可提供我們更多3-NP對人類神經細胞影響的資訊。
除了[Ca2+]ί的不平衡外,近幾年粒線體內鈣離子濃度([Ca2+]m)的增加也被認為是造成細胞凋亡或細胞壞死的主因。因此,我們接著探討3-NP對[Ca2+]m的影響。相對於[Ca2+]ί的改變,[Ca2+]m在加入3-NP 2-4小時後才逐漸增加。加入10 µM ruthenium red抑制粒線體Ca2+的吸收則[Ca2+] m的增加明顯減少,同時也減少3-NP所引起的細胞凋亡的細胞數目達70%。由此證明[Ca2+]m的增加是導致3-NP神經毒性的一個重要步驟。
由前面的實驗證明,自由基的過度製造也是導致細胞死亡的原因之一。由實驗發現,reactive oxygen species (ROS)在加入3-NP後便慢慢增加。加入抗氧化劑propyl gallate不但防止了ROS的增加,且減少了3-NP所引起的細胞凋亡。當我們加入ruthenium red抑制[Ca2+]m的增加,ROS明顯減少;相反地,加入propyl gallate,[Ca2+]m只輕微減少。此表示[Ca2+]m的增加是ROS增加的一個主要來源,而早期ROS的產生並不會明顯影響粒線體的功能。
當我們加入3-NP 6-8小時後,粒線體膜電位開始慢慢減少。如果我們加入ruthenium red抑制[Ca2+]m的增加,膜電位則不會減少。由於粒線體膜電位的去極化與粒線體通透性轉換的發生有關,因此當我們加入cyclosporin A抑制粒線體通透性轉換後,粒線體膜電位便不會減少,同時也防止了細胞凋亡。然而cyclosporin A並不會影響[Ca2+]m的變化。這說明了[Ca2+]m的增加可能導致粒線體通透性轉換的發生,進一步引起粒線體膜電位的去極化。
Caspase的活化與細胞凋亡有關。3-NP的處理使caspase-3的活性由原先的8 ± 1增加到8小時後的42 ± 3。如果加入zVAD-fmk和DEVD-fmk分別抑制所有caspase和caspase-3的活化,則細胞的凋亡皆會減少,證明3-NP的毒性與caspase(包括caspase-3)的活化有關;加入zVAD-fmk和DEVD-fmk也減少了[Ca2+]m增加的幅度,同時粒線體膜電位的下降也減少。證明加入3-NP以後早期caspase (包括caspase-3)的活化可能與隨後[Ca2+]m的增加和粒線體膜電位的去極化有關。當我們同時加入MK-801時,[Ca2+]m的增加,自由基的產生,粒線體膜電位的去極化,和caspase-3的活化,幅度都明顯減少。由此證明,NMDA受體的活化與隨後粒線體功能的改變,caspase-3的活化和ROS的產生都有關。
雖然NMDA受體的活化是3-NP造成神經毒性的主因,這些受體拮抗物的毒性限制了它們臨床運用的價值。然而我們的研究顯示,抑制glutamate的釋放,自由基的產生,內質網Ca2+的釋放,和[Ca2+]m的過度負荷都可能可以運用於防止粒線體功能異常所造成的細胞死亡。此外,抑制粒線體膜電位的去極化與粒線體通透性轉換的發生也是未來可努力的目標。
Mitochondria play an important role in cellular metabolism and survival. Mitochondrial dysfunction was noted to be associated with some neurodegenerative diseases, such as mitochondrial encephalopathy, Parkinson disease, and Huntington’s disease. One of the challenges in understanding disorders with mitochondrial dysfunction is the neuropathogenic mechanism of the lesions in the brain, and their neuroprotective strategies. Systemic administration of 3-nitropropionic acid (3-NP), an irreversible inhibitor of succinate dehydrogenase (SDH), the complex II in mitochondrial respiratory chain, induces selective striatal lesions in rats and non-human primates mimicking those in Huntington’s disease. However, the pathogenic mechanism of the brain lesions also remained unknown. A pathogenic mechanism similar to hypoxic/ischemic damage has been suggested, and excitatory amino acids, especially glutamate, may play an important role, especially through the activation of NMDA receptors. The possibility that the impairment of mitochondrial metabolism might lead to secondary excitotoxic lesions via activation of NMDA receptor was first suggested by Novelli et al.. They found that neurons are more susceptible to glutamate when energy production is impaired. Because a significant proportion of energy in brain is used to support neurotransmission and maintain homeostasis, partial inhibition of energy metabolism may result in neuronal loss, which can be blocked by antagonists of NMDA receptors. Recent studies had shown that non-NMDA receptors may also been activated when the energy metabolism is severely impaired. Therefore, inhibition of glutamate release and blockage of glutamate neurotransmission may be some possible targets for the therapy of brain lesions induced by mitochondrial dysfunction.
In the past, most of the studies about mitochondrial dysfunction were performed by histological evaluation. Over the past several years, more and more evidence was accumulated to indicate that magnetic resonance imaging (MRI) and in vivo proton magnetic resonance spectroscopy (1H-MRS) can be used to non-invasively evaluate cerebral lesions and measure the change of regional cerebral metabolites in vivo. The images obtained in MRI are well correlated with histological changes. 1H-MRS, allowing non-invasive in vivo investigation of cerebral metabolites, has recently been widely used to evaluate a variety of cerebral diseases. Therefore, in the first part of the studies, we try to establish a non-invasive animal model using MRI to investigate the possible pathogenic mechanism of 3-NP-induced neurotoxicity.
We used MRI and 1H-MRS to evaluate the rat brain lesions induced by 3-NP. Systemic administration of 3-NP (15mg/kg/day) to two-month-old Sprague-Dawley rats (n=10 for each group) for five consecutive days induced selective striatal and hippocampal lesions and specific behavioral change mimicking those in Huntington disease. Rats developed behavioral changes 2-3 days after systemic administration of 3-NP. Nine of the ten 3-NP-treated rats developed Grade 4-5 behavioral changes at the 6th day. Pretreatment with lamotrigine (10mg/kg or 20mg/kg/day) or MK-801 (2mg/kg/day) attenuated the lesions and behavioral change. Except for two rats, treated with lamotrigine 10mg/kg/day, developing mild neurological deficits in movement, other rats pretreated with lamotrigine and MK-801 showed only mild decrease of daily activity without prominent limb paralysis. There were also no significant differences in T2 values of the striatum and hippocampus among rats pretreated with MK-801, lamotrigine (20mg/kg) and sham controls. In rats pretreated with lamotrigine 10mg/kg, only two rats still had prominent striatal and hippocampal lesions, and one had a mild hippocampal lesion; the others were free of lesions. The calculated T2 values in the striatum were attenuated from 107.28±28.12 ms in 3-NP-treated rats to 66.28±11.09 ms (lamotrigine 10mg/kg group), 62.21±2.36 ms (lamotrigine 20mg/kg group) and 63.19±1.91 ms (MK-801 group), respectively (P<0.001). In the hippocampus, the T2 values were attenuated from 97.88±19.20 ms in 3-NP-treated rats to 72.36±19.30 ms (lamotrigine 10mg/kg group), 63.41±2.30 ms (lamotrigine 20mg/kg group) and 66.39±2.27 ms (MK-801 group), respectively (P<0.001). Compared with only 3-NP-treated rats, the T2 values of the hippocampus were attenuated by 25-35% while the T2 values of the striatum were attenuated by 38-42% after pretreatment with lamotrigine or MK-801.
Significant elevations of Succinate/creatine (Cr) and Lactate/Cr ratios and decreases of N-acetylaspartate/Cr (NAA/Cr) and Choline/Cr ratios were observed after 3-NP injections for 5 days (P<0.001). The NAA/Cr ratio in the striata well correlated with the behavioral changes of rats. The lactate peaks completely disappeared after pretreatment with lamotrigine and MK-801. However, the changes of NAA/Cr and Choline/Cr ratios were different in various groups of rats. They were nearly prevented after pretreatment with lamotrigine (20mg/kg). However, the NAA/Cr in rats pretreated with lamotrigine (10mg/kg) (P<0.01) and MK-801 (P<0.05) still showed significant reduction as compared with sham controls. Therefore, both lamotrigine and MK-801 are effective in attenuation of brain lesions induced by 3-NP. A higher dose of lamotrigine provides better neuroprotective effect than MK-801. With better therapeutic effect and fewer side effects, lamotrigine is more promising for the potential clinical application. The present study demonstrated that the activation of glutamate receptors is possibly the pathogenic mechanism leading to selective striatal lesions in 3-NP intoxication. This non-invasive animal model can be used to investigate the potential therapeutic medications in the future.
Because 3-NP can lead to significant metabolic changes in rat striatum, to further investigate the mechanisms of neuronal death in neurodegeneration and the effect of 3-NP neurotoxicity on neurons, in vivo 1H-MRS and diffusion-weighted MRI (DWI) were used to evaluate temporal changes in rat striata after 3-NP administration. We found that NAA reduction was preceded by a progressive elevation of lactate peaks located at 1.33 ppm, indicating that impaired oxidative phosphorylation is the mechanism of neuronal death in acute 3-NP intoxication. In this study, NAA reduction with nearly simultaneous development of striatal lesions in DWI was also preceded by a significant and progressive elevation of acetate peak, which was finally confirmed by in vitro 1H-MRS. The elevation of acetate/Cr, which occurred much earlier than the changes of Lactate/Cr and NAA/Cr ratios, was first observed at 75 min after 3-NP injection (mean of Acetate/Cr, 0.243; 95%C.I., 0.182-0.303) (P=0.011). It reached a peak at 165 min after the beginning of NAA/Cr reduction (mean of Ac/Cr, 0.369; 95%C.I., 0.309-0.430), and then began to decline after 165 min when there was still a mild decrease in the NAA/Cr ratio, and recovered to the control level at 255 min. There were no significant changes in Ac/Cr ratio after that point. An early significant elevation of acetate, to our knowledge, has not previously been detected in brain lesions associated with impaired oxidative phosphorylation. There are at least three possible sources of acetate. Because acute administration of 3-NP in rats increases free fatty acids (FFAs) by 130-300% in selective brain regions within one to two hours, the early elevation of acetate may arise partially from the degradation of FFA as in cerebral ischemia or trauma. Besides, 3-NP can inhibit Krebs cycle''s function and lead to the accumulation of the Krebs cycle metabolites, including acetyl-CoA, which may contribute to the elevation of acetate. As a result of disruption of the cell membrane in neuronal injuries, NAA is also freely accessible to degrading enzyme asparto-acylase, leading to the hydrolysis of NAA to aspartate and acetate. These results suggest that acetate elevation may arise from fatty acid degradation, inhibition of SDH, and possible NAA hydrolysis. The elevated acetate may provide a source of acetyl group for membrane repair during excitotoxic brain injury. The present study showed that both DWI and 1H-MRS are sensitive methods for detecting early brain damage due to impaired oxidative phosphorylation. However, acetate and lactate elevations in 1H-MRS provide much earlier evidence of neuronal dysfunction when metabolic energy generation is impaired.
After establishing an in vivo animal model for evaluating the 3-NP-induced neurotoxicity, we would like further to investigate the pathogenic mechanism of 3-NP in cellular level. Human NT2-N neurons, prepared by retinoic acid-induced differentiation of the human teratocarcinoma line Ntera-2, are susceptible to NMDA and non-NMDA receptor-mediated excitotoxicity, and that oxygen/glucose deprivation causes NT2-N neuronal necrosis by an NMDA receptor-mediated mechanism. When 3-NP was used to treat human NT2-N neuron for a long time, it leads to ATP depletion and both necrosis and apoptosis in human NT2-N neurons. Necrosis occurred predominantly during the first 2 days in a dose-dependent manner, whereas apoptosis was observed after 24 hr or later at a low constant rate in different concentration of 3-NP. We assayed the intracellular concentration of Ca2+ ([Ca2+]i) during the first 48 hours in 1mM 3-NP, a period during which 10% of the neurons died by necrosis and 3% by apoptosis. During the first 2 hours in 3-NP, all NT2-N neurons showed [Ca2+]i rise from 48 + 2 to 140 + 12 nM (mean + SEM). After 24 and 48 hours in 3-NP, however, [Ca2+]i remained above 100nM in only 17% and 25% of the NT2-N neurons, respectively, suggesting that most neurons were able to correct this early rise in [Ca2+]i, despite severe ATP depletion, and to survive. Addition of NMDA receptor antagonist MK-801 in acute 3-NP exposure attenuated the rise in [Ca2+]i, while nifedipine, an inhibitor of L-type voltage-gated calcium channels, did not further attenuate the elevation. That indicates that extracellular Ca2+ influx through NMDA receptors rather than calcium channel may explain the major [Ca2+]i elevation in acute 3-NP exposure. Because the addition of xestospongin C and dantrolene prevented the early rise in [Ca2+]i in Ca2+-free solution, the release of internal Ca2+ store from the endoplasmic reticulum rather than mitochondria can explain the early rise in [Ca2+]i, while the elevation of [Ca2+]i in later stage depends on the extracellular Ca2+ influx.
In our study, we also showed that activation of NMDA receptors contributed substantially to 3-NP-induced ATP depletion, and subsequent chronic elevation of [Ca2+]i in the NT2-N neurons. ATP content of control NT2-N neurons was 12.2 + 1.5 nM/mg protein (mean + SEM, n=18). Neuronal ATP content did not fall during the first 6 hours of incubation with 0.1 mM 3-NP, but then declined to 48 + 9 % and 47 + 2% (mean + SEM, n=6) of the basal value at 24 and 48 hours, respectively. Higher concentrations of 3-NP caused an earlier and more profound decline. In 1 mM 3-NP, for example, ATP content varied between 67 and 86% of the basal value during the first 6 hours, and had fallen to 22 + 3% and 25 + 4% of the control value after 24 and 48 hours, respectively. Addition of 10 mM MK-801 concurrently with the 1mM 3-NP substantially diminished ATP depletion. ATP content remained at 80 + 2 % (n=10) of the control value at 48 hours, more than 3-fold higher than in parallel cultures in the absence of MK-801.
The pathogenic mechanisms of 3-NP-induced neuronal death in NT2-N neurons are multiple. Except for NMDA and non-NMDA receptor antagonists and calcium channel antagonists, we also demonstrated that blocking endoplasmic reticulum Ca2+ release enhanced the capacity of these human neurons to maintain [Ca2+]i homeostasis and resist necrosis while subjected to chronic energy deprivation. Two agents, bongkrekic acid and cyclosporin A, that block the mitochondrial permeability transition were modestly neuroprotective, indicating that induction of mitochondrial permeability transition is also important in 3-NP-induced neuronal death. The antioxidant, propyl gallate (10mM), previously reported to diminish 3-NP-induced neuronal apoptosis, also diminished 3-NP-induced NT2-N neuronal LDH release by 44% + 4% (mean + SEM, n=8, p<0.01) at 48 hours.
In the study mentioned above, we showed that 3-NP might produce neuronal death secondary to perturbed intracellular calcium homeostasis. Because studies also showed that Ca2+ influx thought NMDA receptors is more toxic than through calcium channels, there should be other factors in determining the selective toxicity of [Ca2+]i elevation. Intramitochondrial calcium ([Ca2+]m) overload had been found to be associated with both necrosis and apoptosis. Because mitochondria are located close to NMDA receptors, the selective toxicity of Ca2+ entering via NMDA receptors can, therefore, be interpreted as a privileged access of Ca2+ entry to the mitochondria, leading to [Ca2+]m overload. However, the response of [Ca2+]m to 3-NP in neurons remains unknown. In this study, we investigated the roles of and relationships among [Ca2+]m overload, mitochondrial reactive oxygen species, and mitochondrial membrane depolarization in 3-NP-induced neuronal death. Following 1mM 3-NP treatment on primary rat neuronal cultures, there was a gradual increase of [Ca2+]m beginning at 2-4 hrs post 3-NP application. Compared with the [Ca2+]i elevation in previous study, [Ca2+]m elevation occurred much later than the rise in [Ca2+]i. After application of 3-NP, there was also a 2-fold increase of mitochondrial reactive oxygen species (ROS) at 4 hrs. These were followed by mitochondrial membrane depolarization at 6-8 hrs post-treatment. By inhibiting [Ca2+]m uptake, ruthenium red attenuated the production of ROS, and prevented the 3-NP-induced mitochondrial membrane depolarization and 70% of apoptotic neuronal death (p<0.001). Therefore, the elevation of [Ca2+]m contributes to the major part of free radical production, and may lead to mitochondrial permeability transition and subsequent mitochondrial membrane depolarization. The caspase-3 was also activated since the first hour post 3-NP application. Inhibition of caspase or caspase-3 activation attenuated the elevation of [Ca2+]m and mitochondrial membrane depolarization (p<0.001), indicating that caspase (including caspase-3) activation plays a role in the elevation of [Ca2+]m and mitochondrial membrane depolarization.
In this study, MK-801, an antagonist of NMDA receptors, prevented 3-NP-induced [Ca2+]m elevation, ROS production, caspase-3 activation, mitochondrial depolarization, and finally neuronal death. It indicates that the activation of NMDA receptors play a most important role in 3-NP-induced neurotoxicity. Inhibition of its activation and [Ca2+]m overload with subsequent mitochondrial membrane depolarization can therefore attenuate the neuronal death induced by 3-nitropropionic acid.
From our serial studies about 3-NP neurotoxicity, we found that impaired oxidative phosphorylation with subsequent activation of glutamate receptors, especially NMDA receptors, may be the major pathogenic mechanism of 3-NP neurotoxicity. However, perturbed intracellular calcium homeostasis with overproduction of ROS, intramitochondrial calcium overload, mitochondrial permeability transition, and mitochondrial depolarization will interact to lead to neuronal death. Because there is significant neurotoxicity for NMDA receptor antagonist, inhibition of glutamate release, prevention of perturbed intracellular calcium homeostasis, including mitochondrial calcium overload, and inhibition of mitochondrial permeability transition and membrane depolarization may be other potential therapeutic targets. Both in vivo and in vitro research models established in our studies can be used to investigate the pathogenic mechanisms of other neurological diseases.
Key words: 3-nitropropionic acid, magnetic resonance spectroscopy, NMDA receptors, reactive oxygen species, mitochondrial permeability transition, caspase, mitochondrial membrane potential, apoptosis.
目 錄
一、 中文摘要 ---------------------------------- 6
二、 緒論 ------------------------------------- 14
第一節 研究的問題與動機---------------------------- 15
第二節 glutamate受體的活化扮演重要的角色 ------------15
第三節 Huntington病的化學動物模式 ------------------ 16
第四節 3-NP所導致神經細胞的死亡形式 ------------ 20
第五節 3-NP神經毒性的致病機轉 --------------------- 21
第六節 粒線體內鈣離子過度負荷的意義 --------------- 23
第七節 粒線體功能異常的治療方針:可能的藥物 -------- 24
第八節 人類NT2-N細胞是一個研究神經毒性的好模型 ----- 26
第九節 磁共振影像和質子磁共振質譜是追蹤神經退化的
好工具------------------------------------------------ 29
三、 材料與研究方法 ------------------------------ 31
第一部份 3-NP對鼠腦的亞急性傷害
第一節 動物的處理與藥物的給予 ---------------------- 32
第二節 動物行為的觀察 ------------------------------ 32
第三節 鼠腦磁振影像的取得 ------------------------- 33
第二部份 3-NP對鼠腦的急性傷害和腦代謝產物的影響
第一節 動物的處理與藥物的給予----------------------- 34
第二節 磁共振影像和質譜的取得 ---------------------- 34
第三部份 3-NP對人類神經細胞NT2-N細胞的影響
第一節 細胞培養 ------------------------------------ 35
第二節 細胞死亡的測量 ------------------------------ 35
第三節 神經細胞的ATP含量 --------------------------- 36
第四節 細胞內鈣離子濃度的測定 ---------------------- 37
第五節 培養液內glutamate濃度的測定 --------------- 38
第六節 Bcl-2蛋白的表現 ----------------------------- 38
第四部份 3-NP導致神經細胞凋亡的機制是多重性的
第一節 鼠腦神經元培養和藥物處理 ------------------- 38
第二節 神經元存活的評估 ---------------------------- 39
第三節 粒線體內鈣離子濃度的測定 ------------------- 39
第四節 自由基和粒線體膜電位的測定----------------- 40
第五節 caspase活性的測量 --------------------------- 40
四、 結果 ---------------------------------------- 42
第一部份 3-NP對大大鼠行為的影響和致病的機制
第一節 3-NP所引起的行為改變 ------------------------ 43
第二節 T2 圖譜的變化 ------------------------------- 43
第三節 3-NP所導致的腦代謝物的變化 ------------------ 44
第二部份 3-NP對神經細胞的急性傷害
第一節 擴散加權造影(DWI)的變化 --------------------- 50
第二節 活體質子磁共振質譜的變化 -------------------- 50
第三節 體外質子磁共振質譜 -------------------------- 51
第三部份 3-NP對人類神經細胞NT2-N細胞的影響
第一節 3-NP影響NT2-N細胞的存活和粒線體
還原能力 -------------------------------------------- 57
第二節 NT2-N細胞的死亡與許多機制有關 -------------- 58
第三節 3-NP導致細胞ATP含量的減少,這種減少
可被MK-801所抑制 ------------------------------------- 59
第四節 3-NP並沒有增加細胞外glutamate的濃度---------- 59
第五節 3-NP導致NT2-N細胞內鈣離子的增加 ------------- 60
第六節 內質網和粒線體在調節細胞上鈣離子增加
所扮演的角色 ----------------------------------------- 60
第七節 3-NP對NT2-N細胞內Ca2+平衡的慢性效應
------------------------------------------------------ 61
第四部份 3-NP造成神經細胞死亡的原因是多重的
第一節 3-NP可導致鼠腦神經細胞的死亡 ---------------- 71
第二節 粒線體內鈣離子的增加與神經細胞的死亡
有關 ------------------------------------------------ 71
第三節 [Ca2+]m的增加與粒線體自由基的增加,粒
線體通透性轉換的產生和隨後的粒線體膜電位去極化有關 --- 72
第四節 Caspase的活化是3-NP所致細胞死亡所須
且與粒線體功能的改變有關 ----------------------------- 74
第五節 NMDA受體的活化是導致3-NP神經毒性的必要步驟 -- 74
五、 討論 ---------------------------------------- 84
六、 結論與展望 --------------------------------- 98
七、 論文英文簡述 ------------------------------ 105
八、 參考文獻 ------------------------------------ 116
九、 圖表 ---------------------------------------- 147
十、 相關論文發表 ------------------------------- 149
Alexi T., Hughes P.E., Knusel B. and Tobin A.J. Metabolic compromise with systemic 3-nitropropionic acid produces striatal apoptosis in Sprague-Dawley rats but not in BALA/cByJ mice. Exp Neurol 1998; 153:74-93.
Allen H.L. and Iversen L.L. Phencyclidine, dizocilpine and cerebrocortical neurons. Science 1990;274:221.
Alston, T.A., Mela, L., Bright, H.J. 3-Nitropropionate, the toxic substances of Indigofera, is a suicide inactivator of succinate dehydrogenase. Proc Natl Acad Sci USA 1977; 74, 3767-3771.
Andreassen O.A., Dedeoglu A., Ferrante R.J., Jenkins B.G., Ferrante K.L., Thomas M., Friedlich A., Browne S.E., Schilling G., Borchelt D.R., Hersch S.M., Ross C.A., Beal M.F. Creatine increase survival and delays motor symptoms in a transgenic animal model of Huntington''s disease. Neurobiol Dis 2001; 8: 479-491.
Ankarcrona M., Dypbukt J.M., Bonfoco E., Zhivotovsky B., Orrenius S., Lipton S.A. and Nicotera P. Glutamate-induced neuronal death: A succession of necrosis or apoptosis depending on mitochondrial function. Neuron 1995;15:961-973.
Barrere B., Peres M., Gillet B., Mergui S., Boloeil J.C. and Seylaz J. 2D COSY 1H NMR: a new tool for studying in situ brain metabolism in the living animals. FEBS Lett 1990; 264:198-202.
Bates TE, Strangward M, Keelan J, Davey GP, Munro PMG, Clark JB. Inhibition of N-acetylaspartate production: implications for 1H MRS studies in vivo. Neuroreport 1996;7:1397-1400.
Beal M.F. Does impairment of energy metabolism result in excitotoxic neuronal death in neurodegenerative illnesses? Ann Neurol 1992; 31:119-130.
Beal M.F. Do defects in mitochondrial energy metabolism underlie the pathology of neurodegenerative diseases? Trends Neurosci 1993; 16: 125-131.
Beal M.F., Brouillet E., Jenkins B.G., Henshaw R., Rosen B. and Hyman B.T. Neurochemical and histologic characterization of Striatal excitotoxic lesions produced by the mitochondrial toxin 3-nitropropionic acid. J Neurosci 1993;13:4181-4192.
Beal M. F., Ferrante R. J., Henshaw R., et al. 3-Nitropropionic acid neurotoxicity is attenuated in copper/zinc superoxide dismutase transgenic mice. J Neurochem 1995;65:919-922.
Behar K.L. and Ogino T. Assignments of resonances in the H spectrum of rat brain by two-dimensional shift correlated and j-resolved NMR spectroscopy. Magn Reson Med 1991; 17: 285-303.
Behrens M.I., Koh J., Canzoniero L.M.T., Sensi S.L., Csernansky C.A. and Choi D.W. 3-Nitropropionic acid induces apoptosis in cultured striatal and cortical neurons. Neuroreport 1995;6:545-548.
Bernardi P., Vassanelli S., Veronese P., Colonna R., Szabo I., and Zoratti M. Modulation of the mitochondrial permeability transition pore. Effect of protons and divalent cations. J Biol Chem 1992; 267:2934-2939.
Bernardi P., Scorrano L., Colonna R., Petronille V., and Lisa F. D. Mitochondria and cell death. Eur J Biochem 1999;264:687-701.
Benveniste H., Cofer G.P., Piantadosi C.A., Davis J.N. and Johnson G.A. Quantitative proton magnetic resonance in focal cerebral ischemia in rat brain. Stroke 1991;22:259-268.
Binienda Z. and Kim C.S. Increase in levels of total free fatty acids in rat brain regions following 3-nitropropionic acid administration. Neurosci Lett 1997; 230: 199-201.
Birken D.L. and Oldendorf W.H. N-acetyl-L-aspartic acid: a literature review of a compound prominent in 1H NMR spectroscopic studies of brain. Neurosci Biobehav Rev 1989; 13: 23-31.
Bogdanov M.B., Ferrante R.J., Mueller G., Ramos L.E., Martinou J-C., Beal M.F. Oxidative stress is attenuated in mice overexpressing Bcl-2. Neurosci Lett 1999; 262:33-36.
Borlongan C.V., Koutouzis T.K. and Sanberg P.R. 3-Nitropropionic acid animal model and Huntington’s disease. Neurosci Biobehav Rev 1997;21:289-93.
Bottomley P.A. Spatial localization in NMR spectroscopy in vivo. Ann NY Acad Sci 1987; 508: 333-348.
Bredesen D.E. Neural apoptosis. Ann Neurol 1995; 38:839-851.
Brouillet B., Conde F., Beal M. F., and Hantraye P. Replicating Huntington’s disease phenotype in experimental animals. Prog Neurobiol 1999;59:427-468.
Brouillet E., Jenkins B.G., Hyman B.T., Ferrante R.J., Kowall N.W. and Beal M.F. Age-dependent vulnerability of the striatum to the mitochondrial toxin 3-nitropropionic acid. J Neurochem 1993;60:356-359.
Brouillet E., Hantraye P., Ferrante R.J., Dolan R., Leroy-Willig A., Kowall N.W. and Beal M.F. Chronic mitochondrial energy impairment produces selective striatal degeneration and abnormal choreiform movements in primates. Proc. Natl Acad Sci USA 1995; 92:7105-7109.
Brouillet E., Guyot M.C., Mittoux V., Altairac S., Conde F., Palfi S. and Hantraye P. Partial inhibition of brain succinate dehydrogenase by 3-nitropropionic acid is sufficient to initiate striatal degeneration in rat. J Neurochem 1998;70:794-805.
Brownell A.L., Jenkins B.G., Elmaleh D.R., Deacon T.W., Spealman R.D. and Isacson O. Combined PET/MRS brain studies show dynamic and long-term physiological changes in a primate model of Parkinson disease. Nat Med 1998;4:1308-1312.
Brustovetsky N. and Dubinsky J. M. Dual responses of CNS mitochondria to elevated calcium. J Neurosci 2000;20:103-113.
Brustovetsky N. and Dubinsky J. M.,. Limitations of cyclosporin A inhibition of the permeability transition in CNS mitochondria. J Neurosci 2000a;20: 8229-8237.
Burri S.C. and Herschkowitz N. N-acetyl-L-aspartate is a major source of acetyl groups for lipids synthesis during rat brain development. Dev Neurosci 1991; 13: 403-411.
Castilho R. F., Hansson O., Ward M. W., Budd S. L., Nicholls D. G. Mitochondrial control of acute glutamate excitotoxicity in cultured cerebellar granule cells. J Neurosci 1998;18:10277-10286.
Castillo M., Kwock L., and Mukherji S. Clinical application of proton MR spectroscopy. Am J Neuroradiol 1996;17:1-15.
Chalmers-Redman R. M. E., Maclean Fraser A. D., Carlile G. W., Pong A., and Tatton W. G. Glucose protection from MPP+- induced apoptosis depends on mitochondrial membrane potential and ATP synthase. Biochem Biophys Res Commun 1999;257:440-447.
Chang C., Chen G.C., and Jang T. A critical assessment of brain metabolites: analysis of perchloric acid extracts using proton nuclear magnetic resonance. Neurosci Lett 1995; 196: 134-136.
Chang C. and Jang T. Age-dependent neurotoxicity of striatal lesions produced by aminooxyacetic acid: quantitative in vitro proton NMR spectroscopic studies. J Neurochem 1995; 65: 1192-1198.
Chapman A.G., Durmuller N., Lee G.J., and Meldrum B.S. Excitotoxicity of NMDA and kainic acid is modulated by nigrostriatal dopaminergic fibers. Neurosci Lett 1998;107:256-260.
Chen W.H., Chu K.C., Wu S.J., Wu J.C. Shui H.A., and Wu M.L. Early metabolic inhibition-induced intracellular sodium and calcium increase in rat cerebellar granule cells. J Physiol 1999;5151:133-146.
Cheng E.H.-Y., Kircsh D.G., Clem R.J., Ravi R., Kastan M.B., Bedi A., Ueno K., and Hardwick J.M. Conversion of Bcl-2 to a Bax-like death effector by caspases. Science 1997; 278:1966-1968.
Chinopoulos C., Tretter L., Rozsa A., and Adam-Vizi V. Exacerbated response to oxidative stress by an Na+ load in isolated nerve terminals: the role of ATP depletion and rise of [Ca2+]i. J Neurosci 2000;20:2094-2103.
Choi D.W. Cerebral hypoxia: some new approaches and unanswered questions. J Neurosci 1990;10:2493-2501.
Chyi T. and Chang C. Temporal evolution of 3-nitropropionic acid-induced neurodegeneration in the rat brain by T2-weighted, diffusion-weighted, and perfusion magnetic resonance imaging. Neuroscience 1999; 92:1035-1041.
Coles C.J., Edmondson D.E., and Singer T.P. Inactivation of succinate dehydrogenase by 3-nitropropionate. J Biol Chem 1979; 254:5161-5167.
Costantini L.C., Chaturvedi P., Armistead D.M., McCaffrey P.G., Deacon T.W., and Isacson O. A novel immunophilin ligand: distinct branching effects on dopaminergic neurons in culture and neurotrophic actions after oral administration in an animal model of Parkinson’s disease. Neurobiol Dis 1998; 5: 97-106.
Cousin J.P. Clinical MR spectroscopy: fundamentals, current applications, and future potential. Am J Roentgenol 1995;164: 1337-1347.
Coyle J.T. and Puttfarcken P. Oxidative stress, glutamate, and neurodegenerative disorders. Science 1993;262:689-695.
Crumrine R.C., Bergstrand A., Cooper A.T., Faison W.L. and Cooper B.R. Lamotrigine protects hippocampal CA1 neurons from ischemic damage after cardiac arrest. Stroke 1997;28:2230-2237.
Deshpande S.B., Fukuda A., and Nishino H. 3-Nitropropionic acid increases the intracellular Ca2+ in cultured astrocytes by reverse operation of the Na+-Ca2+ exchanger. Exp Neurol 1997;145: 38-45.
Duan W., Guo Z., and Mattson M.P. Participation of par-4 in the degeneration of striatal neurons induced by metabolic compromise with 3-nitropropionic acid. Exp Neurol 2000;165:1-11.
Dubinsky J.M. and Levi Y. Calcium-induced activation of the mitochondrial permeability transition in hippocampal neurons. J Neurosci Res 1998;53:728-741.
Ebisu T., Rooney W.D., Graham S.H., Mancuso A., Weiner M.W., and Maudsley A.A. MR spectroscopic imaging and diffusion- weighted MRI for early detection of kainate-induced status epilepticus in the rat. Magn Reson Med 1996; 36: 821-828.
Erecinska M. and Nelson D. Effects of 3-nitropropionic acid on synaptosomal energy and transmitter metabolism: relevant to neurodegenerative diseases. J Neurochem 1994;63: 1033-1041.
Ernst T. and Hennig J. Coupling effect in volume selective 1H spectroscopy of major brain metabolites. Magn Reson Med 1991; 21:82-96.
Filloux F. and Wamsley J.K. Dopaminergic modulation of excitotoxicity in rat striatum: Evidence from nigrostriatal lesions. Synapse 1991;8:281-288.
Fink S.L., Ho D.Y., Sapolsky R.M. Energy and glutamate dependency of 3-nitropropionic acid neurotoxicity in culture. Exp Neurol 1996;138:298-304.
Fix A.S., Horn J.W., Wightman K.A., Johnson C.A., Long G.G., Storts R.W., Farber N., Wozniak D.F., and Olney J.W. Neuronal vacuolization and necrosis induced by the noncompetitive N-methyl-D-aspartate (NMDA) antagonist MK(+)801 (dizocilpine maleate): A light and electron microscopic evaluation of the rat retrosplenial cortex. Exp Neurol 1994;123:204-215.
Fix A.S., Wightman K.A. and O''Callaghan J.P. Reactive gliosis induced by MK-801 in the rat posterior cingulate/retroplenial cortex: GFAP evaluation by sandwich ELISA and immunocytochemistry. Neurotoxicology 1995;16:229-239.
Frahm J. and Hanefeld F. Localized proton magnetic resonance spectroscopy of brain disorders in childhood. In Magnetic Resonance Spectroscopy and Imaging in Neurochemistry (ed. Bachelard H.), Vol. 8 of Advances in Neurochemistry, pp. 1997;329-402. Plenum Press, New York.
Friberg H., Ferrand-Drake M., Bengtsson F., Halestrap A.P., and Wieloch T. Cyclosporin A, but not FK 506, protects mitochondria and neurons against hypoglycemia damage and implicates the mitochondrial permeability transition in cell death. J Neurosci 1998;18:5151-5159.
Friede R. Histochemical investigations on succinic dehydrogenase in the central nervous system-V. J Neurochem 1961;6:190-199.
Frim D.M., Simpson J., Uhler T.A., Short M.P., Bossi S.R., Breakefield X.O., and Isacson O. Striatal degeneration induced by mitochondrial blockade is prevented by biologically delivered NGF. J Neurosci Res 1993; 35:452-458.
Fukuda A., Deshpande S.B., Shimano Y., and Nishino H. Astrocytes are more vulnerable than neurons to cellular Ca2+ overload induced by a mitochondrial toxin, 3-nitropropionic acid. Neuroscience 1998;87: 497-507.
Galpern W.R., Matthews R.T., Beal M.F., and Isacson O. NGF attenuates 3-nitrotyrosine formation in a 3-NP model of Huntington’s disease. Neuroreport 1996; 7: 2639-2642.
Gamen S., Anel A., Perez-Galan P., Lasierra P., Johnson D., Pineiro A., and Naval J. Doxorubicin treatment activates a z-VAD-sensitive caspase, which causes △Ym loss, caspase-9 activity, and apoptosis in Jurkat cells. Exp Cell Res 2000; 258:223-235.
Gavrieli Y., Sherman Y., and Ben-Sasson S.A. Identification of programmed cell death in situ via specific labeling of nuclear DNA fragmentation. J Cell Biol 1992;119:493-501.
Greenamyre J.T., Olsen J.M.M., Penney J.B., and Young A.B. Autoradiographic characterization of N-methyl-D-aspartate-, quisqualate- and kainate-sensitive glutamate binding sites. J Pharmacol Exp Ther 1985;233:254-263.
Greene J.G. and Greenamyre J.T. Characterization of the excitotoxic potential of the reversible succinate dehydrogenase inhibitor malonate. J Neurochem 1995;64:430-436.
Greene J.G., Sheu S.-S., Gross R.A., and Greenamyre J.T. 3-Nitropropionic acid exacerbates N-methyl-D-aspartate toxicity in striatal culture by multiple mechanisms. Neuroscience 1998;84:503-510.
Grubb D.R., Ly J.D., Vaillant F., Johnson K.L., and Lawen A. Mitochondrial cytochrome c release is caspase-dependent and does not involve mitochondrial permeability transition in didemnin B-induced apoptosis. Oncogene 2001; 20:4085-4094.
Gu M., Cooper J.M., Gash M., Mann V.M., Javoy-Agid F., and Scapira A.H.V. Mitochondrial defect in Huntington’s disease caudate nucleus. Ann Neurol 1996;39:385-389.
Guimaraes A.R., Schwartz P., Prakash M.R., Carr C.A., Berger U.V., Jenkins B.G., Coyle J.T., and Gonzalez R.G. Quantitative in vivo 1H nuclear magnetic resonance spectroscopic imaging of neuronal loss in rat brain. Neuroscience 1995;69:1095-1101.
Guyot M.C., Hantraye P., Dolan R., Palfi S., Maziere N., and Brouillet E. Quantifiable bradykinesia, gait abnormalities and Huntington''s disease-like striatal lesions in rats chronically treated with 3-nitropropionic acid. Neuroscience 1997;79:45-56.
Hamilton B.F. and Gould D.H. Nature and distribution of brain lesions in rats intoxicated with 3-nitropropionic acid: a type of hypoxic (energy deficient) brain damage. Acta Neuropathol 1987;72:286-297.
Harper S., Bilsland J., Young L., Bristow L., Boyce S., Mason G., Rigby M., Hewson L., Smith D., O’Donnell R., O’Commor D., Hill R.G., Evans D., Swain C., Williams B., and Hefti F. Analysis of the neurotrophic effects of GPI-1046 on neuron survival and regeneration in culture and in vivo. Neuroscience 1999; 88: 257-267.
Henneberry R.C., Novelli A., Cox J.A., and Lysko P.G. Neurotoxicity at the N-methyl-D-aspartate receptor in energy-compromised neurons. Ann New York Acad Sci 1989;568:225-233.
Hirsch T., Susin S.A., Marzo I., Marchetti P., Zamazami N., and Kroemer G. Mitochondrial permeability transition in apoptosis and necrosis. Cell Biol Toxicol 1998; 14: 141-145.
Hoang T.Q., Bluml S., Dubowitz D.J., Moats R., Kopyov O., Jacques D., and Ross B.D. Quantitative proton-decoupled 31P MRS and 1H MRS in the evaluation of Huntington''s and Parkinson''s diseases. Neurology 1998;50:1033-1040.
Hoth M., Fanger C. M., and Lewis R. S. Mitochondrial regulation of store operated calcium signaling in T lymphocytes. J Cell Biol 1997;137:633-648.
Hunter D.R. and Haworth R.A. The Ca2+-induced membrane transition in mitochondria. I. The protective mechanisms. Arch Biochem Biophys 1979; 195:453-459.
Ishii H., Arai T., Morikawa S., Inubushi T., Tooyama I., kimura H., and Mori K. Evaluation of focal cerebral ischemia in rats by magnetic resonance imaging and immunohistochemical analyses. J Cereb Blood Flow Metab 1998;18:931-934.
Itoh T., Itoh A., Horiuchi K., and Pleasure D. AMPA receptor-mediated excitotoxicity in human NT2-N neurons results from loss of intracellular Ca2+ homeostasis following marked elevation of intracellular Na+. J Neurochem 1998; 71, 112-124.
Jenkins B.G., Brouillet E., Chen Y.C.I., Storey E., Schulz J.B., Kirschner P., Beal M.F., and Rosen B.R. Non-invasive neurochemical analysis of focal excitotoxic lesions in models of neurodegenerative illness using spectroscopic imaging. J Cereb Blood Flow Metab 1996;16:450-461.
Jenkins B.G., Rosas H.D., Chen Y.C., Makabe T., Myers R., MacDonald M., Rosen B.R., Beal M.F., and Koroshetz W.J. 1H NMR spectroscopy studies of Huntington''s disease: correlations with CAG repeat numbers. Neurology 1998;50:1357-1365.
Kageyama G.H. and Wong-Riley M.T.T. Histochemical localization of cytochrome oxidase in the hippocampus: Correlation with specific neuronal types and afferent pathway. Neuroscience 1982;7:2337-2361.
Keller J. N., Guo Q., Holtsberg F. W., Bruce-Keller A. J., and Mattson M P. Increased sensitivity to mitochondrial toxin-induced apoptosis in neural cells expressing mutant presenilin-1 is linked to perturbed calcium homeostasis and enhanced oxyradical production. J Neurosci 1998;18:4439-4450.
Kim G.W., Copin J.C., Kawase M., Chen S.F., Sato S., Gobbel G.T., and Chan P.H. Excitotoxicity is required for induction of oxidative stress and apoptosis in mouse striatum by the mitochondrial toxin, 3-nitropropionic acid. J Cereb Blood Flow Metab 2000; 20:119-129.
King M.D., van Bruggen N., Ahier R.G., Cremer J.E., Hajnal J.V., Williams S.R., and Doran M. Diffusion-weighted imaging of kainic acid lesions in the rat brain. Magn Reson Med 1991; 20: 158-164.
Kristian T., Gertsch J., Bates T.E., and Siesjo B.K. Characteristics of the calcium-triggered mitochondrial permeability transition in nonsynaptic brain mitochondria: effect of cyclosporin A and ubiquinone 0. J Neurochem 2000;74: 1999-2009.
Kroemer G., Zamzami N., and Susin S. A. Mitochondrial control of apoptosis. Immunol Today 1997;18:44-51.
Krohn A.J., Wahlbrink T., Prehn J.H. M. Mitochondrial depolarization is not required for neuronal apoptosis. J Neurosci 1999;19: 7394-7404.
Kruman I., Guo Q., and Mattson M. P. Calcium and reactive oxygen species mediate staurosporine-induced mitochondrial dysfunction and apoptosis in PC12 cells. J Neurosci Res 1998;51:293-308.
Kruman I. and Mattson M. P. Pivotal role of mitochondrial calcium uptake in neural cell apoptosis and necrosis. J Neurochem 1999;72:529-540.
Leach M.J., Baxter M.G., and Critchley M.A. Neurochemical and behavioral aspects of lamotrigine. Epilepsia 32(suppl), 1991;S4-8.
Lee W.T., Shen Y.Z., and Chang C. Neuroprotective effect of lamotrigine and MK-801 on rat brain lesions induced by 3-nitropropionic acid: evaluation by magnetic resonance imaging and in vivo proton magnetic resonance spectroscopy. Neuroscience 2000a;95:89-95.
Lee W.T., Lee C.S., Pan Y.L., and Chang C. Temporal Changes of cerebral metabolites and striatal lesions in Acute 3-Nitropropionic Acid Intoxication in the Rat. Magn Reson Med 2000b;44:29-34.
Lee W.T., Itoh T., and Pleasure D. Acute and chronic alterations in calcium homeostasis in 3-nitropropionic acid-treated human NT2-N neurons. Neuroscience 2002 (in press).
Leist M., Single B., Castoldi A.F., Kuhnle S., and Nicotera P. Intracellular adenosine triphosphate (ATP) concentration: a switch in the decision between apoptosis and necrosis. J Exp Med 1997; 185:1481-1486.
Leist M. and Nicotera P. Apoptosis, excitotoxicity, and neuropathology. Exp Cell Res 1998; 239: 183-201.
Li F., Srinivasan A., Wang Y., Armstrong R.C., Tomaselli K.J., and Fritz L.C. Cell-specific induction of apoptosis by microinjection of cytochrome c. J Biol Chem 1997; 272: 30299-30305.
Li P.A., Uchino H., Elmer E., and Siesjo B.K. Amelioration by cyclosporin A of brain damage following 5 or 10 min of ischemia in rats subjected to preischemic hyperglycemia. Brain Res 1997;753: 133-140.
Liu X., Kim C.N., Yang J., Jemmerson R., and Wang X. Induction of apoptotic program in cell-free extracts: requirement for dATP and cytochrome c. Cell 1996; 86: 147-157.
Liu X.J. Investigations on the etiology of mildewed sugarcane poisoning. A review. Chin J Prevent Med 1986; 20:306-308.
Lu C., Chan S.L., Haughey N., Lee W.T., and Mattson M.P. Selective and biphasic effect of the membrane lipid peroxidation product 4-hydroxy-2,3-nonenal on N-methyl-D-aspartate channels. J Neurochem 2001; 78, 577-589.
Ludolph A.C., He F., Spencer P.S., Hammerstad J., and Sabri M. 3-Nitropropionic acid — exogenous animal neurotoxin and possible human striatal toxin. Can J Neurol Sci 1991; 18: 492-498.
Ludolph A.C., Seelig M.O., Ludolph A., Novitt P., Allen C.N., Spencer P.S., and Sabri M.I. 3-Nitropropionic acid decreases cellular energy levels and causes neuronal degeneration in cortical explants. Neurodegeneration 1992;1:21-28.
Ludolph A.C., Seeling M., Ludolph A., Novitt P., Allen C.N., and Sabri M.I. 3-Nitropropionic acid decreases cellular energy levels and causes neurodegeneration in cortical explants. Neurodegeneration 1992;1:155-161.
Luo Y., Bond J. D., and Ingram V. M. Compromised mitochondrial function leads to increased cytosolic calcium and to activation of MAP kinases. Proc Natl Acad Sci USA 1997;94:9705-9710.
Macdonald R.L. and Greenfield L.J. Mechanisms of action of new antiepileptic drugs. Curr Opin Neurol 1997;10:121-128.
Maragos W.F., Jakel R.J., Pang Z., and Geddes J.W. 6-Hydroxydopamine injections into the nitrostriatal pathway attenuate striatal malonate and 3-nitropropionic acid lesions. Exp Neurol 1998;154:637-644.
Mark R.J., Hensle, K., Butterfiel, D.A., Mattso, M.P. Amyloid b-peptide impairs ion-motive ATPase activities: evidence for a role in loss of neuronal Ca2+ homeostasis and cell death. J Neurosci 1995;15:6239-6249.
Martin M., Labouesse J., Canioni P., and Merle M. N-acetyl-L-aspartate and acetate 1H NMR signal overlapping under mild acidic pH conditions. Magn Reson Med 1993; 29: 692-694.
Martin M, Merle M, Labouesse J, Canioni P. Postnatal decrease of acetate concentration in rat cerebellum. J Neurosci Res 1994; 37: 103-107.
Marzo I., Susin S.A., Petit P.X., Ravagnan L., Brenner C., Larochette N., Zamzami N., and Kroemer G. Caspases disrupt mitochondrial membrane barrier function. FEBS Lett 1998; 427: 198-202.
Matsuura K., Makino H., and Ogawa N. Cyclosporin A attenuates the decrease in tyrosine hydroxylase immunoreactivity in nigrostriatal dopaminergic neurons and in striatal dopamine content in rats with intrastriatal injection of 6-hydroxydopamine. Exp Neurol 1997; 146:526-535.
Matthews P.M., Andermann F., Silver K., Karpati G., and Arnold D.L. Proton MR spectroscopic characterization of differences in regional brain metabolic abnormalities in mitochondrial encephalomyopathies. Neurology 1993;43:2484-2490.
Mattson M.P., Cheng B., Davis D., Bryant K., Lieberburg E., and Rydel R.E. b-Amyloid peptides destabilize calcium homeostasis and render human cortical neurons vulnerable to excitotoxicity. J Neurosci 1992;12: 376-389.
Mattson M.P., Zhang Y., and Bose S. Growth factors prevent mitochondrial dysfunction, loss of calcium homeostasis, and cell injury, but not ATP depletion in hippocampal neurons deprived of glucose. Exp Neurol 1993; 121: 1-13.
Mattson M.P., Barger S.W., Begley J.G., and Mark R.J. Calcium, free radicals, and excitotoxic neuronal death in primary cell culture. Methods Cell Biol 1995;46: 187-216.
Mattson M.P., Guo Q., Furukawa K., and Pedersen W.A. Presenilins, the endoplasmic reticulum, and neuronal apoptosis in Alzheimer’s disease. J Neurochem 1998;70: 1-14.
Mehta V. and Namboodiri M.A.A. N-acetylaspartate as an acetyl source in the nervous system. Mol Brain Res 1995; 31:151-157.
Messam C.A., Greene J.G., Greenamyre J.T., and Robinson M.B. Intrastriatal injections of the succinate dehydrogenase inhibitor, malonate, cause a rise in extracellular amino acids that is blocked by MK-801. Brain Res 1995; 684:221-224.
Miller D.K. The role of caspase family of cysteine proteases in apoptosis. Semin Immunol 1997; 9:35-49.
Miller S.L., Daikhin Y., and Yudkoff M. Metabolism of N-acetyl- L-aspartate in rat brain. Neurochem Res 1996; 21: 615-618.
Miller B.L., Chang L., Booth R., Ernst T., Cornfort M., Nikas D., McBride D., and Jenden D.J. In Vivo 1H MRS choline: correlation with in vitro chemistry/histology. Life Sci 1996;58:1929-1935.
Monaghan D.T. and Cotman C.W. Distribution of N-methyl- D-aspartate-sensitive L-[3H] glutamate-binding sites in rat brain. J Neurosci 1985;5:2909-2919.
Moriwaki A., Lu Y-F., Tomizawa K., and Matsui H. An immunosuppressant, FK-506, protects against neuronal dysfunction and death but has no effect on electrographic and behavioral activities induced by systemic kainate. Neuroscience 1998; 86:855-865.
Morris M.P., Pagan C., and Warmke H.E. Hiptagenic acid, a toxic component of Indigofera endecaphylla. Science 1954;119:322-323.
Murphy A.N., Fiskum G., and Beal M.F. Mitochondria in neurodegeneration: bioenergetic function in cell life and death. J Cereb Blood Flow Metab 1999;17: 815-832.
Nadler J.V. and Cooper J.R. Metabolism of the aspartyl moiety of N-acetyl-L-aspartic acid in the rat brain. J Neurochem 1972; 19: 2091-2105.
Namura S., Ziiu J.M., Fink K., Endres M., Srinivasan A., Tomaselli K.J., Yuan J.Y., and Moskowitz M.A. Activation and cleavage of caspase-3 in apoptosis induced by experimental cerebral ischemia. J Neurosci 1998;18:3659-3668.
Nicholls D.G. and Budd S.L. Mitochondria and neuronal survival. Physiol Rev 2000; 80:315-360.
Nicotera P., Bellomo G., and Orrenius S. Calcium-mediated mechanisms in chemically induced cell death. Annu Rev Pharmacol Toxicol 1992;32:449-470.
Nishino H., Shimano Y., Kumazaki M., and Sakurai T. Chronically administered 3-nitropropionic acid induced striatal lesions attributed to dysfunction of the blood-brain barrier. Neurosci Lett 1995;186:161-164.
Nishino H., Kumazaki M., Fukuda A., Fujimoto I., Shimano Y., Hida H., Sakurai T., Deshpande S.B., Shimizu H., Morikawa S., and Inubushi T. Acute 3-nitroproprionic acid intoxication induces striatal astrocytic cell death and dysfunction of the blood-brain barrier: Involvement of dopamine toxicity. Neurosci Res 1997;27:343-355.
Nishino H., Nakajima K., Kumazaki M., Fukuda A., Muramatsu K., Deshpande S.B., Inubushi T., Morikawa S., Borlongan C.V., and Sanberg P.R. Estrogen protects while testosterone exacerbates vulnerability of the lateral striatal artery to chemical hypoxia by 3-nitropropionic acid. Neurosci Res 1998;30:303-312.
Novelli A., Reilly A.J., Lysko P.G., and Henneberry R.C. Glutamate becomes neurotoxic via N-methyl-D-aspartate receptor when intracellular energy levels are reduced. Brain Res 1988;451:205-212.
Ott D., Hennig J., and Ernst T. Human brain tumors: assignment with in-vivo MR spectroscopy. Radiology 1993; 186: 745-752.
Oyama Y., Hayashi A., Ueha T., and Maekawa K.. Characterization of 2'',7''-dichlorofluorescin fluorescence in dissociated mammalian brain neurons: estimation on intracellular content of hydrogen peroxide. Brain Res 1994;635:113-117.
Pacher P. and Hajnoczky G. Propagation of the apoptotic signal by mitochondrial waves. EMBO J 2001; 20:4107-4121.
Pang Z., Umberger G.H., and Geddes J.W. Neuronal loss and cytoskeletal disruption following intrahippocampal administration of the metabolic inhibitor malonate: lack of protection by MK-801. J Neurochem 1996;66: 474-484.
Pang Z. and Geddes J.W. Mechanisms of cell death induced by mitochondrial toxin 3-nitropropionic acid: acute excitotoxic necrosis and delayed apoptosis. J Neurosci 1997;17:3064-3073.
Patel T.B. and Clark J.B. Synthesis of N-acetyl-L-aspartate by rat brain mitochondria and its involvement in mitochondrial/cytosolic carbon transport. Biochem J 1979; 184: 539-546.
Peeling J., Wong D., and Sutherland G.R. Nuclear magnetic resonance study of regional metabolism after ischemia in rats. Stroke 1989;20: 633-640.
Peng T.I. and Greenamyre J.T. Privileged access to mitochondria of calcium influx through N-methyl-D-aspartate receptors. Mol Pharmacol 1998;53:974-980.
Petroff O.A.C., Ogino T., and Alger J.R. High-resolution proton magnetic resonance spectroscopy of rabbit brain: regional metabolite levels and postmortem changes. J Neurochem 1988; 51: 163-171.
Pleasure S.J., Page C., and Lee V.M.-Y. Pure, postmitotic, polarized human neurons derived from Ntera 2 cells provide a system for expressing exogenous proteins in terminally differentiated neurons. J. Neurosci. 1992;12:1802-1815.
Pulsinelli W., Sarokin A., and Buchan A. Antagonism of the NMDA and non-NMDA receptors in global versus focal brain ischemia. Prog Brain Res 1993; 96:125-135.
Raboisson P., Flood K., Lehmann A., and Berge O.G. MK-801 neurotoxicity in the Guinea pig cerebral cortex: Susceptibility and regional differences compared with the rat. J Neurosci Res 1997;49:364-371.
Rehncrona S., Wasterberg E., Akesson B., and Siesjo B.K. Brain cortical fatty acids and phospholipids during and following complete and severe incomplete cerebral ischemia. J Neurochem 1982;38: 84-93.
Remy C., Grand S., Lai E.S., Belle V., Hoffmann D., Berger F., Esteve F., Ziegler A., Le Bas J.F., Benabid A.L., Decorps M., and Segebarth C.M. 1H MRS of human brain abscesses in vivo and in vitro. Magn Reson Med 1995; 34: 508-514.
Richter C. Reactive oxygen and nitrogen species regulate mitochondrial Ca2+ homeostasis and respiration. Biosci Rep 1998;17: 53-66.
Rootwelt T., Dunn M., Yudkoff M., Itoh T., Almaas R., Pleasure D. Hypoxic cell death in human NT2-N neurons: involvement of NMDA- and non-NMDA-glutamate receptors. J Neurochem 1998;71: 1544-1553.
Ross B.D. Biochemical considerations in 1H spectroscopy. Glutamate and glutamine; myo-inositol and related metabolites. NMR Biomed 1991;4:59-63.
Rubin Y., Cecil K., Wehril S., McIntosh T.K., Lenkinski R.E., and Smith D.H. High-resolution 1H NMR spectroscopy following experimental brain trauma. J Neurotrauma 1997; 14: 441-449.
Sanchez-Carbente M. del R. and Massieu L. Transient inhibition of glutamate uptake in vivo induces neurodegeneration when energy metabolism is impaired. J Neurochem. 1991;72: 129-138.
Sato S., Gobbel G.T., Honkaniemi J., Li Y., Kondo T., Murakami K., Sato M., Copin J.C., and Chan P.H. Apoptosis in the striatum of rats following intraperitoneal injection of 3-nitropropionic acid. Brain Res 1997;745:343-347.
Sattler R., Charlton M.P., Hafner M., and Tymianski M. Distinct influx pathways, not calcium load, determine neuronal vulnerability to calcium neurotoxicity. J Neurochem 1998;71:2349-2364.
Sauer D., Allegrini P.R., Thedinga K.H., Massieu L., and Amacker H. Evaluation of quinolinic acid induced excitotoxic neurodegeneration in rat striatum by quantitative magnetic resonance imaging in vivo. J Neurosci Methods 1992;42:69-74.
Schapira A.H.V. Oxidative stress and mitochondrial dysfunction in neurodegeneration. Curr Opin Neurol 1996;9:260-264.
Schulz J.B. and Beal M.F. Mitochondrial dysfunction in movement disorders. Curr opin in Neurol 1994; 7:333-339.
Schulz J.B., Henshaw D.R., MacGarvey U., and Beal M.F. Involvement of oxidative stress in 3-nitropropionic acid neurotoxicity. Neurochem Int 1996;29:167-171.
Schulz J.B., Mattews R.T., Henshaw D.R., and Beal M.F .Neuroprotective strategies for treatment of lesions produced by mitochondrial toxins: implications for neurodegenerative diseases. Neuroscience 1996;71:1043-1048.
Seaton T.A., Cooper J.M., and Schapira A.V.H. Cyclosporin inhibition of apoptosis induced by mitochondrial complex I toxins. Brain Res 1998; 809: 12-17.
Sengpiel B., Preis E., Krieglstein J., Prehn J.H.M. NMDA-induced superoxide production and neurotoxicity in cultured rat hippocampal neurons: role of mitochondria. Eur J Neurosci 1998;10:1903-1910.
Simpson J.R. and Isacson O. Mitochondrial impairment reduces the threshold for in vivo NMDA-mediated neuronal death in the striatum. Exp Neurol 1993;121:57-64.
Stefani A., Spadoni F., Siniscalchi A., and Bernardi G. Lamotrigine inhibits Ca2+ currents in cortical neurons: Functional implications. Eur J Pharmacol 1996;307:113-116.
Stejskal E.O. and Tanner J.E. Spin diffusion measurements: spin echoes in the presence of a time-dependent field gradient. J Chem Phys 1965; 42: 288-290.
Stout A K., Raphae, H M., Kanterewic, B.I., Klann E., and Reynolds I.J. Glutamate-induced neuron death requires mitochondrial calcium uptake. Nat Neurosci 1998;1:366-373.
Taylor D.L., Davies S.E.C., Obrenovitch T.P., Doheny M.H., Patsalos P.N., Clark J.B., and Symon L. Investigation into the role of N-acetylaspartate in cerebral osmoregulation. J Neurochem 1995; 65:275-281.
Tsai M.J., Goh C.C., Wan Y.L., and Chang C. Metabolic alterations produced by 3-Nitropropionic acid in rat striata and cultured astrocytes: Quantitative in vitro 1H nuclear magnetic resonance spectroscopy and biochemical characterization. Neuroscience 1997; 79:819-826.
Uetsuki T., Takemoto K., Nishimura I., Okamoto M., Niinobe M., Momoi T., Miura M., and Yoshikawa K. Activation of neuronal caspase-3 by intracellular accumulation of wild-type Alzheimer amyloid precursor protein. J Neurosci 1999;19:6955-64.
Urejnak J., Williams S.R., Gadian D.G., and Noble M. Proton nuclear magnetic resonance unambiguously identifies neural cell types. J Neurosci 1993;13:981-989.
Volbracht C., Leist M., and Nicotera P. ATP controls neuronal apoptosis triggered by microtubule breakdown or potassium deprivation. Mol Med 1999;5: 477-489.
Wang S.J., Huang C.C., Hsu K.S., Tsai J.J., and Gean P.W. Inhibition of N-type calcium currents in lamotrigine in rat amygdalar neurons. Neuroreport 1996;7:3037-3040.
Wang S.J., Tsai J.J., and Gean P.W. Lamotrigine inhibits depolarization-evoked Ca influx in dissociated amygdala neurons. Synapse 1998;29:355-362.
Wang Z., Zimmerman R.A., and Sauter R. Proton MR spectroscopy of the brain: clinically useful information obtained in assessing CNS diseases in children. Am J Roentgenol 1996;167:191-199.
Weller M. and Paul S.M. 3-Nitropropionic acid is an indirect excitotoxin to cultured cerebellar granule neurons. Eur J Pharmacol 1993;248:223-8.
Wullner U., Young A.B., Penny J.B., and Beal M.F. 3-Nitropropionic acid toxicity in the striatum. J Neurochem 1994;63:1772-81.
Wyllie A.H., Kerr J.F.R., and Currie A.R. Cell death: the significance of apoptosis. Int Rev Cytol 1990; 68: 251-306.
Younkin D., Tang C.-M., Hardy M., Reddy U.R., Pleasure S., Lee V., Pleasure D. Induction of NMDA receptor expression and glutamate excitotoxicity in the clonal human cell line NTera 2. Proc Natl Acad Sci USA 1993; 90, 2174-2178.
Yu Z., Zhou D., Cheng G., Mattson M.P. Neuroprotective role for the p50 subunit of NF-kappaB in an experimental model of Huntington''s disease. J Mol Neurosci 2000;15: 31-44.
Yuan J. Transducing signals of life and death. Curr Opin Cell Biol 1997; 9: 247-251.
Zeevalk G.D. and Nicklas W.J. Chemically induced hypoglycemia and anoxia: relationship to glutamate receptor-mediated toxicity in retina. J Pharmacol Exp Ther 1990;253:1285-1292.
Zeevalk G.D. and Nicklas W.J. Mechanisms underlying initiation of excitotoxicity associated with metabolic inhibition. J Pharmacol Exp Ther 1991;257:870-878.
Zhang Y. and Lipton P. Cytosolic Ca changes during in vitro ischemia in rat hippocampal slices: major roles for glutamate and Na+-dependent Ca2+ release from mitochondria. J Neurosci 1999;19:3307-3315.
Zhang X., Boulton A.A., Zou D.M., and Yu P.H. MK-801 induces apoptotic neuronal death in the rat retroplenial cortex: Prevention by cycloheximide and r(-)-2-hexyl-n-methylpropargylamine. J Neurosci Res 1996;46:82-89.
Zoratti M. and Szabo I. The mitochondrial permeability transition. Biochim Biophys Acta 1995;1241:139-176.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 郭重吉(1996):從建構主義談數理師資培育的革新。科學發展月刊 , 24(7) , 555-562。
2. 張美玉(1998):建構取向的科學教室內師生互動實例。科學教育學刊, 6(2), 49-168。
3. 張世忠 (1998):社會建構教學與科學概念。教育資料與研究, 24, 30-35。
4. 莊嘉坤(1995):認知研究在科學教育的省思。屏師科學教育, 1, 25-29。
5. 黃萬居(1997):談建構主義的自然科教學。教育資料與研究 , 18 , 35-37。
6. 劉宏文(1996):建構主義的認識論觀點及其在科學教育上的意義。科學教育月刊 ,193, 8-26。
7. 鍾聖校(1994a):對科學教育錯誤觀念研究之省思。教育研究資訊, 2(3),89-110。
8. 謝青龍(1996):從「迷思概念」到「另有架構」的概念改變。科學教育月刊, 180,23-28。
9. 王晉基、郭重吉,(1992):利用選擇題的方式來探求國中學生對光的迷思概念之研究,彰化,國立彰化師範大學科學教育研究所碩士論文。
10. 王振興 熊同鑫(1999):行動、反思與成長:一位自然科教師的自我教學研究。科學教育學刊,7(1),17-34。
11. 王國華(1995):建構與學習,建構與教學,1。
12. 江武雄(1995):建構主義的教學策略─以「科學教育專題研究」為例。建構與教學,(2)。[Online].Available:http://sewww.ncue.edu.tw/c&t/issuel-8/v2-1.htm
13. 朱則剛(1994):建構主義知識論與情境認知的迷失─兼論其對認知心理學的意義,教學科技與媒體,2,3-14。
14. 沈中偉(1994):魏考斯基理論在認知策略上的應用。教學科技與媒體,(2),頁23-31。
15. 邱美虹(2000):概念改變研究的省思與啟示,科學教育學刊,8(1),1-34
 
系統版面圖檔 系統版面圖檔