(3.238.186.43) 您好!臺灣時間:2021/02/28 12:30
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:鄭如婷
研究生(外文):CHENG, JU-TING
論文名稱:多元性剪接對人類基因表現複雜度的影響性:人類ArfGAP基因家族的研究
論文名稱(外文):Human Genome Complexity Attributed to Alternative Splicing:The Study of ArfGAP Gene Family
指導教授:常蘭陽
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:醫事技術學研究所
學門:醫藥衛生學門
學類:醫學技術及檢驗學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
中文關鍵詞:多元性剪接基因表現複雜度ArfGAP基因家族
外文關鍵詞:alternative splicinggenome complexityArfGAP gene family
相關次數:
  • 被引用被引用:0
  • 點閱點閱:179
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:9
  • 收藏至我的研究室書目清單書目收藏:0
在人類基因體定序工作接近尾聲之同時,許多模式生物的序列與基因數目也陸續地被決定出來。其中人類基因數目出乎生物學家預料的僅在30,000到40,000個之間。此時生物學家們所共同發出的疑問是,人類是如何以僅有線蟲或果蠅不到兩倍的基因數目呈現出如此複雜的生物型態?而比起線蟲來說要複雜數倍的果蠅其基因數目又為何反而比線蟲要來得少?從人類表現序列(EST sequences)與基因體序列比對的結果顯示,在高等生物中基因普遍會發生多元性剪接作用以增加其基因表現的複雜度,其發生機率估計約在35﹪─59﹪左右。在本論文中我們以人類ArfGAP基因家族作為研究對象,希望能藉由它們幫助我們實際瞭解在人體中基因是如何以多元性剪接的方式增加其蛋白質表現的複雜度。我們研究的方法是,先採用生物資訊學的軟體比對公用資料庫中的基因或蛋白質序列後進行預測、篩選與分析的工作,接著以RT-PCR的方式驗證預測結果。由實驗結果估計人類ArfGAP基因家族多元性剪接發生機率約在37.5﹪左右,並且其可經由不同排列組合的剪接形式表現出更多元化的等形蛋白質序列。另外在實驗過程中經由比對基因在正常成人及胎兒肝臟,以及在肝癌病人組織中的表現情形,意外地發現到一個有潛力發展為肝癌標誌的基因“KIAA1099”,並在未來將對其進行更深入的探討。
Since the beginning of the human genome project in 1990, genome sequences of many model organisms have been determined one after another. The reports of only 30,000 to 40,000 genes in the human genome came as a surprise. How could the human’s genome have only approximately twice as many gene as the relatively simple organisms, e.g. Caenorhabditis elegans and Drosophila melanogaster ? How could the fly genome contain fewer genes than the less complex organism - worm ? Depending on the alignment of human EST sequences to genomic sequence, biologists have estimated that, comparing to the fly and worm, the frequency of alternative splicing in the human genome is rather high at about 35─59﹪. In our study, we used the human ArfGAP gene family as a model to examine the roles of alternative splicing in generating protein diversity. According to the results, the alternative splicing frequency of the human ArfGAP gene family is about 37.5﹪and it may be still an underestimate. Furthermore, we found that one gene (KIAA1099) may adopt combinatorial alternative splicing to produce more complex isoforms. Meanwhile, the KIAA1099 gene may be a potential liver cancer marker gene by comparative analysis of its expression patterns in normal adult and fetal livers, and hepatocellular tumor tissues. The result suggests that the KIAA1099 gene may be linked to the pathogenesis of liver cancer.
誌謝....................................................I
表目錄..................................................II
圖目錄..................................................III
中文摘要................................................V
英文摘要................................................VI
縮寫表..................................................VII
壹﹑緒論................................................1
貳、實驗材料及方法......................................6
2.1實驗材料.........................................6
2.2實驗方法.........................................12
參﹑實驗結果............................................20
3.1生物資訊學的應用.................................20
3.2實驗數據.........................................25
3.3繪製人類ArfGAP基因家族之演化樹...................28
肆﹑討論................................................30
伍﹑未來展望............................................33
陸﹑參考文獻............................................34

1. Henikoff, S. Beyond the central dogma. Bioinformatics 18, 223-5 (2002).
2. Thieffry, D. & Sarkar, S. Forty years under the central dogma. Trends Biochem Sci 23, 312-6 (1998).
3. Scriver, C. R. Henry Friesen Award Lecture. Work, the clinician-scientist and human biochemical genetics. Clin Invest Med 24, 179-95 (2001).
4. Penalva, M. A. A fungal perspective on human inborn errors of metabolism: alkaptonuria and beyond. Fungal Genet Biol 34, 1-10 (2001).
5. Modrek, B. & Lee, C. A genomic view of alternative splicing. Nat Genet 30, 13-9 (2002).
6. Modrek, B., Resch, A., Grasso, C. & Lee, C. Genome-wide detection of alternative splicing in expressed sequences of human genes. Nucleic Acids Res 29, 2850-9 (2001).
7. Collins, F. S. et al. New goals for the U.S. Human Genome Project: 1998-2003. Science 282, 682-9 (1998).
8. Roberts, L., Davenport, R. J., Pennisi, E. & Marshall, E. A history of the Human Genome Project. Science 291, 1195 (2001).
9. Lander, E. S. et al. Initial sequencing and analysis of the human genome. Nature 409, 860-921 (2001).
10. Venter, J. C. et al. The sequence of the human genome. Science 291, 1304-51 (2001).
11. Claverie, J. M. Gene number. What if there are only 30,000 human genes? Science 291, 1255-7 (2001).
12. Galas, D. J. Sequence interpretation. Making sense of the sequence. Science 291, 1257-60 (2001).
13. Malakoff, D. Will a smaller genome complicate the patent chase? Science 291, 1194 (2001).
14. Harrison, P. M., Kumar, A., Lang, N., Snyder, M. & Gerstein, M. A question of size: the eukaryotic proteome and the problems in defining it. Nucleic Acids Res 30, 1083-90 (2002).
15. Graveley, B. R. Alternative splicing: increasing diversity in the proteomic world. Trends Genet 17, 100-7 (2001).
16. Brett, D., Pospisil, H., Valcarcel, J., Reich, J. & Bork, P. Alternative splicing and genome complexity. Nat Genet 30, 29-30 (2002).
17. Brett, D. et al. EST analysis online: WWW tools for detection of SNPs and alternative splice forms. Trends Genet 16, 416-8 (2000).
18. Brett, D. et al. EST comparison indicates 38% of human mRNAs contain possible alternative splice forms. FEBS Lett 474, 83-6 (2000).
19. Mironov, A. A., Fickett, J. W. & Gelfand, M. S. Frequent alternative splicing of human genes. Genome Res 9, 1288-93 (1999).
20. Kan, Z., Rouchka, E. C., Gish, W. R. & States, D. J. Gene structure prediction and alternative splicing analysis using genomically aligned ESTs. Genome Res 11, 889-900 (2001).
21. Gaasterland, T. & Oprea, M. Whole-genome analysis: annotations and updates. Curr Opin Struct Biol 11, 377-81 (2001).
22. Croft, L. et al. ISIS, the intron information system, reveals the high frequency of alternative splicing in the human genome. Nat Genet 24, 340-1 (2000).
23. Goldberg, J. Structural and functional analysis of the ARF1-ARFGAP complex reveals a role for coatomer in GTP hydrolysis. Cell 96, 893-902 (1999).
24. Takai, Y., Sasaki, T. & Matozaki, T. Small GTP-binding proteins. Physiol Rev 81, 153-208 (2001).
25. Kirchhausen, T. Three ways to make a vesicle. Nat Rev Mol Cell Biol 1, 187-98 (2000).
26. Majoul, I., Straub, M., Hell, S. W., Duden, R. & Soling, H. D. KDEL-cargo regulates interactions between proteins involved in COPI vesicle traffic: measurements in living cells using FRET. Dev Cell 1, 139-53 (2001).
27. Mandiyan, V., Andreev, J., Schlessinger, J. & Hubbard, S. R. Crystal structure of the ARF-GAP domain and ankyrin repeats of PYK2-associated protein beta. Embo J 18, 6890-8 (1999).
28. Vitale, N. et al. GIT proteins, A novel family of phosphatidylinositol 3,4, 5-trisphosphate-stimulated GTPase-activating proteins for ARF6. J Biol Chem 275, 13901-6 (2000).
29. Mazaki, Y. et al. An ADP-ribosylation factor GTPase-activating protein Git2-short/KIAA0148 is involved in subcellular localization of paxillin and actin cytoskeletal organization. Mol Biol Cell 12, 645-62 (2001).
30. Premont, R. T., Claing, A., Vitale, N., Perry, S. J. & Lefkowitz, R. J. The GIT family of ADP-ribosylation factor GTPase-activating proteins. Functional diversity of GIT2 through alternative splicing. J Biol Chem 275, 22373-80 (2000).
31. Hanke, J. et al. Alternative splicing of human genes: more the rule than the exception? Trends Genet 15, 389-90 (1999).
32. Roberts, G. C. & Smith, C. W. Alternative splicing: combinatorial output from the genome. Curr Opin Chem Biol 6, 375-83 (2002).
33. Black, D. L. Protein diversity from alternative splicing: a challenge for bioinformatics and post-genome biology. Cell 103, 367-70 (2000).

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文
 
系統版面圖檔 系統版面圖檔