(18.205.60.226) 您好!臺灣時間:2019/12/15 10:54
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
本論文永久網址: 
line
研究生:林宛筠
研究生(外文):Wan Yun Lin
論文名稱:不同纖維方向的濾嘴對主流煙微粒收集效率之影響
論文名稱(外文):The Effects of Fiber Orientation on the Collection Efficiency of Mainstream Smoke
指導教授:陳志傑陳志傑引用關係
指導教授(外文):Chih-Chieh Chen
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:職業醫學與工業衛生研究所
學門:醫藥衛生學門
學類:公共衛生學類
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:59
中文關鍵詞:香菸濾嘴過濾主流煙
外文關鍵詞:cigarette filterfiltrationmainstream
相關次數:
  • 被引用被引用:6
  • 點閱點閱:299
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:41
  • 收藏至我的研究室書目清單書目收藏:1
綜觀國內外及菸商,在主流煙燃燒特性研究中,大多都是經過濾嘴後的結果,包括主流煙之粒徑分佈與不同吸菸次數與體積對主流煙總微粒量之影響等方面的研究。另外,在濾嘴過濾方面,著重於濾嘴對總微粒物、尼古丁及焦油的過濾效能研究,並未針對濾嘴的過濾特性作深入探討,此外,醋酸纖維濾嘴的纖維方向都與抽氣的氣流方向平行,與一般過濾理論中垂直於抽氣的氣流方向的特性截然不同,其過濾特性與機制是否不同亦是值得探討的。因此,本論文主要探討未經濾嘴的主流煙之燃燒特性以及不同纖維方向的濾嘴對主流煙氣懸微粒的收集效率之影響。
本研究以玻璃纖維濾紙為採樣濾紙,以幫浦抽氣,並使用濾紙匣及微孔沈積衝擊採樣器來採集主流煙之總微粒物及量測無濾嘴的主流煙粒徑分佈。此外,以定流量噴霧器與超音波霧化器噴嘴產生粒徑範圍為0.03∼10m之測試氣懸微粒,並以Scanning Mobility Particle Sizer ( SMPS )與Aerodynamic Particle Sizer ( APS )來量測通過濾嘴前後的數目濃度,而獲得其貫穿率,使用U型壓力計量測濾嘴的空氣阻抗大小,綜合貫穿率與空氣阻抗可獲得濾嘴的過濾品質。
在主流煙之量測結果發現,香菸的燃燒速率與總微粒量隨採樣流量增加而增加,但並不會影響無濾嘴的主流煙之粒徑分佈;另外在濾嘴過濾特性方面,發現濾嘴的空氣阻抗隨著表面風速增加而增加,且垂直方向的空氣阻抗比平行的大,濾嘴之貫穿率與過濾品質在不同表面風速下之趨勢不會因濾材方向改變而改變,但與氣流垂直的濾材具有較好之收集效率及過濾品質。除此之外,在理論預測模式中,以Landahl之預測結果最符合濾嘴的過濾特性。
綜合無濾嘴主流煙之粒徑分佈以及濾嘴之過濾效率結果後,發現在隨著採樣流量(抽氣速度)增加,穿透垂直方向濾嘴後之主流煙微粒重量濃度也會增加,但其MMD會隨著減小。
In most of the reported investigations, the combustion characteristics of mainstream almost were about filter cigarette, including the size distribution of mainstream and the affection of varying puff numbers and volumes on total particulate matter. On the other hand, much of filtration theory is concerned with the flow pattern close to the fiber surface, where the filter tend to be orientated mostly perpendicular to airflow. However, cigarette filters remove aerosol particles apparently by very different filtration mechanisms, because the fiber orientation almost parallels airflow. Most of previous studies measured cigarette filter efficiency based on total mass. The experimental data as a function of aerosol size is limited. Therefore, the main objectives of this work are to characterize the combustion characteristics of nonfilter cigarette and the filtration characteristics of cigarette filter, and to contrast the difference between the parallel (to airflow) filter and perpendicular filter.
In the sampling system of mainstream, a filter medium employed was glass fiber filters; the total particulate matter of mainstream was collected in the cassette; the Micro-orifice Uniform Deposit Impactor was used to measure the size distribution of mainstream. In order to establish the experiment system of filtration, a constant output aerosol nebulizer and ultrasonic atomizing nozzle were used to generate challenged aerosols range from 0.03 mm to 10 mm; a Kr-85 radiation source neutralized the challenged aerosols to Boltzmann charge equilibrium; a scanning mobility particle sizer (SMPS) and an aerodynamic particle sizer (APS) measured the aerosol penetration; a U type manometer measured the pressure drop of cigarette filter.
Experimental results indicated that the burning rate and total particulate matter of nonflter cigarette increased with sampling flow rate. The sampling flow rate didn’t shift the size distribution of nonfilter mainstream. On the other hand, the pressure drop of filter increased with face velocity and parallel filter was lower than perpendicular one. In different face velocities, the fibrous orientation of filter didn’t alter the trends of penetration and filter quality, but perpendicular filter performs better than parallel one. Landahl model was suitable to predict the filtration of cigarette filter.
Integrating sizes distribution of mainstream with filtration of filter, the mass concentration of mainstream increased with sampling flow rate increasing but MMD decreased.
中文摘要…………………………………………………………………………….i
Abstract…………………………………………………………………………….. ii
目錄…………………………………………………………………………………iv
表目錄………………………………………………………………………………vi
圖目錄………………………………………………………………………………vii
一、 研究背景與目的……………………………………………………………...1
二、 文獻探討……………………………………………………………………...3
2-1國際香菸標準測試條件…………………………………………………...3
2-2香菸的介紹………………………………………………………………..3
2-3主流煙燃燒過程…………………………………………………………..5
2-4香菸主流菸微粒粒徑分布………………………………………………..6
2-5吸煙習慣對香菸微粒的影響……………………………………………..7
2-6香菸燃燒之產物…………………………………………………………..7
2-7 MOUDI的採樣原理………………………………………………………7
2-8過濾的機制………………………………………………………………..8
2-9濾材之壓降(空氣阻抗)…..…………………………………………..12
2-10 過濾品質……………………………………………………………….13
三、 研究方法與材料…………………………………………….………………14
3-1材料………………………………………………………………………14
3-2-1香菸捲菸紙的透氣量量測……………………………………….……14
3-2-2香菸未燃燒與燃燒時的壓降量測…………………………………….15
3-2-3香菸燃燒速率與主流煙總微粒質量之量測……………………….…15
3-2-4無濾嘴的主流煙之量測………………………………………….……16
3-3-1操作變項…………………………………………………………….…17
3-3-2濾嘴基本資料的推算……………………………………………….…17
3-3-3香菸濾嘴的空氣阻抗實驗…………………………………………….18
3-3-4香菸濾嘴之氣懸微粒貫穿率實驗……………………………………19
3-4不同纖維方向濾嘴對主流煙微粒的收集效率之計算…………………20
四、結果與討論…………………………………………………………………..21
4-1-1樣菸的基本特性………………………………………………………21
4-1-2抽氣量對主流煙微粒產生之影響……………………………………21
4-1-3無濾嘴的主流煙之粒徑分佈量測……………………………………22
4-2-1濾嘴基本資料…………………………………………………………23
4-2-2香菸濾嘴的空氣阻抗…………………………………………………23
4-2-3香菸濾嘴的貫穿率……………………………………………………23
4-2-4香菸濾嘴的過濾品質…………………………………………………24
4-3不同纖維方向的濾嘴對主流煙氣懸微粒的收集效率…………………26
五、結論與建議…………………………………………………………………..27
參考文獻…………………………………………………………………………..28
Anderson, D.J., Wilson, J.D., and Hiller, F.C., Particle Size Distribution of Mainstream Tobacco and Marijuana Smoke. Am.Rev.Respir.Dis.140, 202-205,1989.
Blackford, D.B., G.J. Bostock, R.C. Brown, R. Loxley, and D. Wake, Alteration in the Performance of Electrostatic Filters Caused by Exposure to Aerosols. Proc. Fourth World Filtration Congress. Ostende, Beigium. pp7.27-7.33, 1986.
Browne, C. L. The Design of Cigarettes. Third Edition. North Carolina: Filter Products Division, 1990; 59.
Brown, R. C. A Many-fibre Model of Airflow Through a Fibrous Filter. J. Aerosol Sci. Vol. 15 , No. 5, 583-593. 1984.
Browne, C. L., C. H. Keith, R. E. Allen, The Effect of Filter Ventilation on the Yield and Composition of Mainstream and Sidestream Smoke, Beitr. Tabakforscch. 10 (2): 81-90, 1980.
Chen B. T., Namenyi J. , Yeh H. C., Mauderly J. L., and Cuddihy R. G.. Physical Characterization of Cigarette Smoke Aerosol Generated from a Walton Smoke Machine. Aerosol Science and Technology 12: 364-375, 1990.
Centers for Disease Control and Prevention. National Household Survey on Drug Abuse; 1991.
Carolan. Acetate Tow for Cigarette Filter. Technical Manual, 1990.
Djordjevic, M., Fan, J., Ferguson, S., & Hoffmann, D. (1995) Self-regulation of Smoking Intensity. Smoke yields of the Low-nicotine, Low-tar Cigarettes. Carcinogenesis, 16, 2015-2021, 1995.
DeBardeleben, M.Z., Claflin, W. E., and Gannon, W.F. Role of Cigarette Physical Characteristics on Smoke Composition. Recent Adv. Tob. Sci.4, 85-111, 1978.
Davies, C. N., Air Filtration, Academic Press, London, 1973.
Emi, H., C. Kanaoka, Y Otani, and T. Ishiguro, Collection Mechanisms of Electret Filter. Particulate Sci. and Technol. 5:161-171, 1987.
Green, C. R., and Rodgman, A. The Tobacco Chemists’ Research Conference; A Half-century of Advances in Analytical Methodology of Tobacco and Its Products. Recent Adv. Tob. Sci. 22, 131-304, 1996.
Huang, S.H., Chen, C.C. Filtration Mechanisms of Personal Protective Particulate Respirators, (Expanded Paper) The 1996 International Conference on Aerosol Science and Technology, Chungli, Taiwan, December 5-7, 1996.
Hinds, W.C, Aerosol Technology. Second Edition. New York: John Wiley and Sons, Inc. 1998; 182-202,.
Hinds, W. C., Size Characteristics of Cigarette Smoke. Am.Ind. Hyg.Assoc. J. 39, 48-54, 1978.
Hoffmann Dietrich, Hoffmann, I., Karam El-Bayoumy. The Less Harmful Cigarette: A Controversial Issue. Chemical Research in Toxicology, vol14, No.7, 2001.
Hoffmann Dietrich, Hoffmann, I. THE Changing Cigarette, 1950—1995. Journal of Toxicology and Environmental Health, 50:307—364, 1997.
Hoffmann, D, Hoffmann, I., and Wynder, E. L. The Changing Cigarette, 1950-1997. Preventive Medicine, 26, 427-434, 1997.
Hoffmann, D, Djordjevic, M. V., Brunnemann, K. D. Changes in Cigarette Design and Composition Over Time and How They Influence the Yields of Smoke Constituents. J. Smoking Rel. Disorders 6: 9-23, 1995.
Ishizu, Y., Ohta, K., Okada, T., Change in the Size and the Concentration of Cigarette. J. Aerosol Sci., 9, 25-29, 1978.
Ingham, D.B., The Diffusional Deposition of Aerosols in Fibrous Filter. J. Aerosol Sci. 12: 357-365, 1981.
ISO 3402, Tobacco and Tobacco Products-Atmosphere for Conditioning and Testing. 1991.
Jenkins, R. A. Guerin, M.R. Tomkins, B.A. The Chemistry of Environmental Tobacco Smoke: Composition and Measurement. Second Edition. New York: Lewis Publishers. 1999; 51.
Kleeman, M.J., J.J. Schauer and G.R. Cass, Size and Composition Distribution of Fine Particulate Matter Emitted From Wood Burning, Meat Charbroiling and Cigarettes, Environ. Sci. and Technol., 33, 3516-3523, 1999.
Keith, C. H., and J. R. Newsome, Quantitative Studies on Cigarette Smoke. II. The Effect of Physical Variables on the Weight of Smoke. Tob. Sci.1:58-63, 1957.
Lathrache, R., H.J. Fissan, and S. Neumann, Deposition of Submicron Particles on Electrically Charged Fibers. J. Aerosol Sci. 17: 446-449, 1986.
Lewis, C. I. The Effect of Cigarette Construction Parameters on Smoke Generation and Yield. Recent Adv. Tob. Sci.
Lee, K.W. and B.Y.H. Liu, Theoretical Study of Aerosol Filtration by Fibrous filter. Aerosol Sci Technol. 1:147-161, 1982.
Liu, B.Y.H. and K.L. Rubow, Air Filtration by Fibrous Media. In Fluid Filtration: Gas, Volume I. R.R. Raber, ed. ASTM STP 975, 1-13, 1986.
Landahl, H., Hermann, K. J. Colloid Sci, 4, 103, 1949.
Marple, V. A., Rubow K. L., and Behm, S. M. A Microorifice Uniform Deposit Impactor(MOUDI): Description, Calibration, and Use. Aerosol Sci. Technol, 14: 434-446, 1990.
National Research Council 1986, Environmental Tobacco Smoke, Measuring Exposure and Assessing Health Effects. National Academy Press: Washington, D.C.
Nguyen, X. and J.M. Beeckmans, Single Fiber Capture Efficiencies of Aerosol Particles in Real and Model Filters in the Inertial-Interceptive Domain. J. Aerosol Sci. 6:205-212, 1975.
Norman, V., The Effect of Perforated Tipping Paper on the Yield of Various Smoke Components. Beitr. Tabakforsch. 4(5):282-287, 1973.
Ogden, M.W., and Maiolo, K.C. Collection and Determination of Solanesol As a Tracer of Environmental Tobacco Smoke(ETS).J. High Resolut. Chromatogr. Chromatogr. Commun. 11,341-343,1989.
Pankow , James F., A Consideration of the Role of Gas/Particle Partitioning in the Deposition of Nicotine and Other Tobacco Smoke Compounds in the Respiratory Tract. Chemical Research in Toxicology. Vol: 14, No. 11, 2001.
Rose JE. Nicotine Addiction and Treatment. Annu Rev Med. 1996; 41: 493-507.
Schur, M. O., and J. C. Rickards, Design and Operation of a Multiple Smoking Machine, Tob. Sci. 1: 13-20, 1957.
Paul H. Brodish, MSPH The Irreversible Health Effects of Cigarette Smoking, American Council on Science and Health, 1998.
Taylor M. J., The Chemistry of Cigarette Smoke, Filtrona Technology Center, 1999.
Tang, H., Richards, G., Benner, C.L., Tuomihen, J.P., Lee, M.L., Lewis, E.A., Hansen, L.D., and Eatough, D.J. Solanesol, A Tracer for Environmental Tobacco Smoke Particles. Environ. Sci.Technol.24, 848-852,1990.
The World Bank. Curbing the Epidemic: Governments and the Economics of Tobacco Control. Washing D.C., The World Bank, 1999.
Terrell, J. H., and Schmeltz, I. Alteration of Cigarette Smoke Composition. Ⅱ. Influence of Cigarette Design. Tob. Sci. 14, 82-85, 1970.
U.S. Department of Health and Human Services. The Health Benefits of Smoking Cessation, MD: Office of Smoking and Health; 1990.
Wakeham, H. Recent Trends in Tobacco and Tobacco Smoke Research. The Chemistry of Tobacco and Tobacco Smoke, Plenum Press, New York, NY, 1-20, 1972.
Yeh, H.C. and B.Y.H. Liu, Aerosol Filtration by Fibrous Filters-I. Theoretical. J. Aerosol Sci. 5:191-204, 1974.
Yeh, H.C. and B.Y.H. Liu, Aerosol Filtration by Fibrous Filters-I. Experimental. J. Aerosol Sci. 5:205-217, 1974.
中國國家標準︰菸葉及菸製品檢驗方法─試驗場所之標準條件,總號5917
董氏基金會︰http://www.jtf.org.tw/
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 16. 連經宇、陳彥仲,模糊語意變數法應用於住宅消費決策行為之初探研究,住宅學報,第八期,1999,pp.69-90。
2. 8. 林佳琪、孫智陸,Cournot競局理論下OPEC卡特爾組織的水平合併行為,法商學報,1994,第30期,pp.297-352。
3. 15. 許義忠,Stackelberg賽局與Nash賽局之公共財生產均衡---論最弱環法則與最強棒法則,淡江人文社會學刊,1999,pp.91-108。
4. 14. 梁文貴,訊息不足對決策行為之影響-賽局、訊息與交易成本三理論之觀點,大同學報,1998,pp.45-54。
5. 17. 陳勁甫、張民忠,以線性模式探討Nash議價賽局,國防管理學院學報,第二十卷,第一期,1999,pp.41-49。
6. 21. 陳煌儒,倉儲容量、存貨成本與聯合採購:微分賽局法之應用,黎明學報,第十卷,第一期,1996,pp.105-115.
7. 23. 曾國雄、馮正民、陳郁文,模擬雙人競局理論應用於台灣地區小汽車市場競爭分析,中國行政評論,第六卷,第三期,1997,pp.71-79.
8. 24. 黃允成,從實證觀點探討風險下的決策行為特性,科技管理學刊,第三卷,第二期,1998,pp.75-112。
9. 25. 黃允成,組織內單票制最適配票策略之研究,人文及社會科學集刊,第十三卷,第一期,2001,pp.1-31。
10. 32. 鄭貴龍、吳明德,利用賽局理論訂定行動電話市場價格,中華電信技術季刊,第二卷,第一期,1998,pp.60-68。
11. 33. 蕭再安,Stackelberg競局下生產與區位決策之整合研究,逢甲學報,第二十六期,1993,pp.107-123。
12. 34. 蕭再安、曾國雄,Stackelberg-Nash均衡局面下競爭性設施區位問題之研究,運輸第17期,1992,pp.1-14。
13. 35. 譚令蒂、王偉輝,雙邊獨占廠商之最適區位選擇---Nash談判解,經濟論文,中央研究院經濟研究所,1992,pp.525-539。
14. 9. 張立憲,1985,土石流特性之探討,中華水土保持學報,16(1):135-
15. 14. 游繁結,1991,土石流堆積特性之初步探討,中華水土保持學報,22
 
系統版面圖檔 系統版面圖檔