(54.236.58.220) 您好!臺灣時間:2021/03/01 17:27
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:王文正
研究生(外文):Wen-Jeng Wang
論文名稱:台灣百步蛇的精製蛇毒蛋白agglucetin與acurhagin之分子結構和作用機轉的探討
論文名稱(外文):Molecular Structure and Functional Characterization of Agglucetin and Acurhagin Purified from the Venom of Formosan Agkistrodon acutus
指導教授:黃德富
指導教授(外文):Tur-Fu Huang
學位類別:博士
校院名稱:國立臺灣大學
系所名稱:藥理學研究所
學門:醫藥衛生學門
學類:藥學學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:186
中文關鍵詞:台灣百步蛇蛇毒蛋白血小板凝聚醣蛋白Ib結合蛋白金屬蛋白酶
外文關鍵詞:Formosan Agkistrodon acutusvenom proteinplatelet agglutinationglycoprotein Ib-binding proteinmetalloproteinase
相關次數:
  • 被引用被引用:1
  • 點閱點閱:298
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:28
  • 收藏至我的研究室書目清單書目收藏:0
在動脈硬化斑塊破裂或高剪力血流處的血栓形成中,血小板凝集的發生是由醣蛋白(GP)Ib-IX-V複合體與von Willebrand factor (vWf)結合而啟動。此與在高剪力血流處的止血反應中,血小板GPIb-IX-V複合體黏附於受傷血管壁之vWf的過程是相仿的,而後促使血小板活化與黏著分子αIIbβ3 (GPIIb/IIIa)相關之血小板凝集;然於低剪力血流處,則是由黏著分子α2β1 (GPIa/IIa)或GPVI,來媒介血小板黏附於collagen。目前已知許多作用於GPIb-IX-V、GPIIb/IIIa、GPIa /IIa、GPVI、vWf與collagen的蛇毒蛋白,都屬於C-type lectin-like與metalloproteinase-disintegrins等兩大類蛋白家族,由於它們具有特異生物活性,現已充作研究「止血與血栓形成」的工具。
GPIb-IX-V複合體是一種在血小板表面持續表現的受體,由四種貫穿胞膜之醣蛋白Ibα、Ibβ、IX與V所組成,其中GPIbα在胞外分別以雙硫鍵與GPIbβ聯結,以非共價鍵與GPIX及GPV聯結;有證據顯示,vWf在GPIbα最N端的282個胺基酸內,至少有兩處以上的結合位。其實在體外透過非生理性調節劑,如抗生素ristocetin與蛇毒蛋白botrocetin結合於vWf-A1 domain,亦可促使vWf結合至GPIbα,而造成血小板凝聚(agglutination)。此外,在眾多屬於二元體C-type lectin-like之蝮蛇蛋白,業已證實可直接結合至GPIbα的N端可能重疊但不相同的部位,而阻斷vWf結合。亦即目前發現的醣蛋白Ib結合蛋白(GPIb-BPs),大多是GPIb拮抗劑,不會誘發血小板凝聚,但分別從T. albolabris與A. halys blomhoffii分離的alboaggregin-B和mamushigin,則可直接凝聚血小板,功能上為醣蛋白Ib致效劑;此外,另一分離自T. flavoviridis的Flavocetin-A,亦可藉交錯聯結血小板,造成血小板凝聚。相較之下,從T. albolabris分離之alboaggregin-A,除了能凝聚血小板外,尚能作用於GPVI,而誘導凝集與釋放反應。
最近,我們自臺灣百步蛇(Agkistrodon acutus)原毒,分離出一嶄
新血小板凝聚誘導劑agglucetin。利用凝膠電泳分析,在非還原條件下,此蛋白呈單一色帶,其估算分子量約58.8 kDa;還原後則出現兩個色帶,分子量分別為16.2 與14.5 kDa。再經rp-HPLC、電噴離子化質譜儀(ESI-MS)與二維電泳(2D-PAGE)分析,我們證實native agglucetin是一個由雙硫鍵聯結之 α1、 α2、β1與 β2 等次單元所組成之四元體蛋白。其四個次單元之N端部份序列, 均與GPIb-BPs有高度相似性。功能性研究顯示, Agglucetin於vWf不存在下,在人類血小板懸液中,能以劑量相關性誘導血小板凝聚,並且引起微量胞內鈣離子濃度升高,與血栓素(thromboxane) B2生成。醣蛋白Ib單株抗體AP1或LJ-Ib1,能以劑量相關型式,抑制agglucetin所誘發之血小板凝聚;然而EDTA、arietin (一種長鏈含RGD之抗黏著蛇毒蛋白)、7E3 (一種GPIIb/IIIa單株抗體)、heparin、hirudin、PGE1、indomethacin或醣類等試劑,則不具抑制作用。我們進一步藉流式細胞儀分析,發現螢光標定(FITC)之agglucetin,能以劑量相關方式結合至福馬林(甲醛)固定之血小板,並且可達飽和型式,然此作用會被醣蛋白Ib專一作用抗體阻斷。
另外, Agglucetin也可交錯連接血小板GPIb,而促使血小板凝聚。我們藉分子選殖技術,解讀其兩個β次單元(β1/β2)的全部cDNA與推算胺基酸序列,發現其先導胜肽(23/23胺基酸)及其成熟蛋白(123/126胺基酸),與GPIb-BPs有極高相似性,且兩個β次單元都具有保留性的7個Cys及兩個hydrophilic patch,最近有文獻指出這兩個hydrophilic patch可能就是蛇毒蛋白用來與醣蛋白Ibα結合的部位;然而在β2次單元分子中,可見有額外的Cys3與在第二個patch的Gly105,這暗示兩個β次單元在與GPIb作用方面,分別扮有不同角色。
在人類富含血小板血漿(PRP), Agglucetin可先後引發凝聚與凝集反應,我們證實這兩相反應分別與GPIb及GPIIb/IIIa有關;以不同血小板製備(甲醛固定與等張液清洗之血小板)來觀察比較,Agglucetin確實可直接凝聚血小板,而無須任何輔因子;此外,利用流式細胞儀分析,我們初步認為agglucetin能專一作用於GPIb來增強血小板GPIIb /IIIa複合體的表現,是因為這種受體表現增強情形,會因crotalin (一種能切除醣蛋白Ibα之蛇毒金屬蛋白)的前處理而抑制;另外,以staurosporine、BAPTA-AM與PGE 1等前處理,亦可完全阻斷此作用,這表示在GPIb相關的inside-out訊息中,蛋白激C與胞內鈣離子移動會引起GPIIb/IIIa暴露及血小板凝集。
蛇毒金屬蛋白酶(SVMP)以其分子中有保留性之鋅結合序列-HEXXHXXGXXH而隸屬鋅蛋白中metzincin家族的成員,目前已知此特色構型(motif)與其蛋白分解活性有關。SVMP可依其結構,分成P-I、P-II、P-III與P-IV等四群; 這四群SVMP的metalloproteinase domain都具有一個鋅結合序列; P-I class僅含一個metalloproteinase domain,例如HR2a與trimerelysin Ⅱ等;P-II class 含metalloproteinase與 disintegrin-like domain,例如trigramin 及 rhodostomin的前驅蛋白;P-III class (高分子量金屬蛋白酶)含metalloproteinase、disintegrin-like domain與high-cysteine domain,例如mocarhagin與jararhagin等; P-IV class (具C-type lectin domain之SVMP)除擁有P-III class的三種結構域外,另含一個lectin-binding domain,例如russellysin 與 carinactivase-1等。SVMP除了會分解血漿蛋白,例如纖維蛋白原與交錯連接之纖維蛋白外,也能分解許多胞外基質,例如vWf、collagen與laminin等,故能影響結締組織的重建以及凝血過程;此外, SVMP也被認為具有溶解血栓之臨床運用潛力。
我們採用陰離子交換與厭水性交互作用等管柱層析法,由台灣百步蛇原毒中純化出一高分子量金屬蛋白酶acurhagin。凝膠電泳分析顯示其還原態儗似分子量約51.4 kDa,質譜分析顯示其精確分子量為48,133 Da,故acurhagin係單元體蛋白。經序列分析得知,其分子中metalloproteinase domain的部分序列,非常類似第三群蛇毒金屬蛋白;Acurhagin依序可切割纖維蛋白原Aα、Bβ鏈,但幾乎不影響γ鏈;利用 rp-HPLC觀察其切割片段,我們發現它能強力分割纖維蛋白原成許多胜肽碎片。在37 ℃溶液中,它會自我裂解出30 kDa的片段,然此片段之N端序列,極類似含有disintegrin-like 與cysteine-rich domain的金屬蛋白;經酪蛋白分解活性檢測,Acurhagin之蛋白分解活性,會被Ca2+ 與Mg2+ 等離子些微增強,但卻會被Zn2+完全抑制,當我們用金屬螯合劑預處理時,Acurhagin會完全喪失酵素活性;此外,它除了能以溫浴時間相關方式,於PRP能抑制ADP引發之凝集反應外,我們也發現acurhagin具有切割collagen與vWf的活性,可分別抑制collagen與 ristocetin所誘發之血小板凝集。
總結:agglucetin專一作用於血小板GPIb,而誘發血小板凝聚,其結合部位與單株抗體AP1重疊,然此作用與鈣離子、醣類及GPIIb /IIIa無關。另外,我們解讀出agglucetin兩個β次單元全長cDNA與推算蛋白序列,此完全序列有助於說明其不具鈣離子及醣依賴性的結合特性;Agglucetin藉由專一性連接GPIb而凝聚血小板,並隨後引發功能性αⅡbβ3的趨增表現;其間訊息包括有蛋白激酶C活化與胞內鈣離子濃度增高;然在完整agglucetin分子中, 其α與β次單元究竟如何與GPIb做最適切的交互作用則尚待釐清。咸信務需完全揭曉其另兩個α次單元的全長序列,始能有助探討agglucetin與GPIb作用之生物活性;此外,我們亦證實acurhagin係P-III class蛇毒金屬蛋白,可有效切割胞外基質如collagen、fibrinogen與 vWf等。我們期望日後能利用X光晶體繞射與推理式site-directed mutagenesis等實驗,來進一步探討agglucetin與acurhagin之完整分子結構與活性的關係,並釐清相關問題。

In thrombosis, platelet aggregation is initiated by a specific membrane glycoprotein (GP) Ib-IX-V complex binding to its ligand, von Willebrand factor (vWf), in the matrix of ruptured atherosclerotic plaques or in plasma exposed to high shear stress. This process closely resembles normal haemostasis at high shear stress, where GPIb-IX-V-dependent platelet adhesion to vWf in the injured blood vessel wall initiates platelet activation and integrinαⅡbβ3 (GPIIb/IIIa)-dependent platelet aggregation. At low shear stress, other receptors such as integrinα2β1 (GPIa/IIa) or GPVI that bind collagen mediate platelet adhesion. It is well-known that snake venoms contain a variety of GPIb-IX-V, GPIIb/IIIa, GPIa/IIa, GPVI, vWf and collagen targeting proteins typically belonging to one of two major protein familys, the C-type lectin-like proteins and the metalloproteinase-disintegrins. Based on their biology activities, some of them have been utilized as useful probes for the basic studies of haemostasis and thrombosis.
The GP Ib-IX-V complex constitutively expressed on the platelet membrane is made up of four transmembrane glycoproteins: GPIba disulfide-linked to GPIbb and the non-covalently associated subunits, GPIX and GPV. There are accumulating evidences revealing that vWf binds to at least two sites within the first 282 residues of GPIba. In vitro, vWf is activated to bind GPIb-IX-V complex in the absence of shear by the non-physiological modulators, such as an antibiotic, ristocetin, or a viper venom protein, botrocetin. Ristocetin and botrocetin all bind to specific sequences within the A1 domain of vWf and induce platelet agglutination. Viper venom proteins of the C-type lectin-like family consisting of heterodimers have been shown to bind to overlapping, but not identical, sites within the N-terminal ligand-binding domain of GPIba, thus blocking vWf binding. Meanwhile, most snake venom GPIb-BPs, functioning as GPIb antagonists, do not induce platelet agglutination. However, alboaggregin-B (AL-B) from the venom of Trimeresurus albolabris and mamushigin from that of Agkistrodon halys blomhoffii, directly agglutinate platelets without the need of any cofactor, functioning as GPIb agonists. Otherwise, flavocetin-A, from Trimeresurus flavoviridis venom, induces platelet aggregate formation by cross-linking platelets. Alboaggregin-A (AL-A) from the same snake venom with AL-B also can agglutinate platelets. However, AL-A has an additional GPVI effect in inducing platelet aggregation and release reaction.
In this thesis, we purified a novel platelet agglutination inducer, agglucetin, from the Formosan Agkistrodon acutus (A. acutus) snake venom. It migrated as a single band with an apparent molecular mass of 58.8 kDa and two distinct bands of 16.2/14.5 kDa under non-reducing and reducing conditions by SDS-PAGE, respectively. Further confirmed by FPLC, electrospray ionization mass spectrometry and 2D-PAGE, native agglucetin exists as a tetramer composed of disulfide-linked α1, α2, β1 and β2 subunits. Partial N-terminal sequence of agglucetin subunit showed a high degree of homology to those of C-type lectin-like GPIb-BPs. Functional studies showed that agglucetin, in the absence of vWf, dose-dependently induced platelet agglutination and caused a negligible elevation of intracellular Ca2+ mobilization and thromboxane B2 formation in human platelet suspensions. Anti-GP Ib monoclonal antibodies (mAbs), AP1 or LJ-Ib1, specifically inhibited agglucetin-induced platelet agglutination in a dose-dependent manner. However, EDTA, arietin (a long chain RGD-containing disintegrin), 7E3 (an anti-GP IIb/IIIa mAb), heparin, hirudin, PGE1, indomethacin or carbohydrate exhibited no inhibitory effect on agglucetin-induced platelet agglutination. Furthermore, flow cytometric analysis revealed that FITC-agglucetin dose-dependently bound to human formalin-fixed platelets in a saturable manner, and its binding was specifically blocked by anti-GP Ib mAb.
On the other hand, we also found that agglucetin triggers platelet agglutination through the cross-linking of platelet membrane GPIb. Structurally, we resolved the cDNA sequences of two agglucetin β subunits (β1 andβ2) by molecular cloning and found that the leader peptides (23/23 amino acid residues) and the mature subunits (123/126 amino acid residues) share a high degree of homology to those of GPIb-BPs. In human platelet-rich plasma, agglucetin elicited the sequential biphasic responses of agglutination and aggregation in a GPIb- and GPIIb/IIIa-dependent manner, respectively. Agglucetin directly agglutinated platelets in the absence of any cofactor as observed with fixed platelets by microscopy and washed platelets by flow cytometry. Furthermore, agglucetin specifically enhanced the surface expression of GPIIb/IIIa complex in a GPIb-dependent manner because the enhanced expression of functional GPIIb/IIIa complex on agglucetin-aggregated platelets was abolished as platelets were pretreated with a GPIb-cleaving metalloproteinase, crotalin. Pretreatments with staurosporine, BAPTA-AM or PGE1 also completely blocked such effects, suggesting that protein kinase C activation and intracellular calcium mobilization are involved in the GPIb-dependent inside-out signaling, i.e. the subsequent GPIIb/IIIa exposure and platelet aggregation.
Snake venom metallopoteinases (SVMPs) belong to the metzincin family among several zinc-containing metalloproteinases. They are characterized by the presence of a conservative zinc-binding sequence, HEXXHXXGXXH, as an essential motif for the proteolytic activity. SVMPs are classified according to their domain structure into four basic groups, P-I (protein class I) to P-IV. All four groups share a metalloproteinase domain containing the Zn2+-binding motif. The P-I class only has a metalloproteinase-domain structure, such as HR2a and trimerelysin II. The P-II class has an additional domain carboxy to the proteinase domain, a disintegrin or distintegrin-like domain, such as precusor proteins of trigramin and rhodostomin. The P-III class (high-molecular mass metalloproteinase) has both a disintegrin-like domain and a high-cysteine domain carboxy to the proteinase domain, such as mocarhagin and jararhagin. The P-IV class has a similar domain structure to the P-III class, but with an additional lectin-binding domain, such as russellysin and carinactivase-1. In addition to degradation of plasma proteins such as fibrinogen and cross-linked fibrin, metalloproteinases are able to degrade many constituents of the extracellular matrix such as vWf, collagen and laminin. Thus, they are implicated in connective tissue remodeling and blood coagulation processes. Furthermore, these proteins have potential clinical use in dissolving thrombi.
By means of anion-exchange and hydrophobic interaction chromatography, acurhagin, a high-molecular mass hemorrhagic metalloproteinase, was also purified from the crude venom of A. acutus. Acurhagin is a monomer with a molecular mass of 51.4 kDa under non-reducing conditions on SDS-PAGE and 48,133 Da by mass spectrometry. Partial amino acid sequence of its metalloproteinase domain is homologous to other P-III class metalloproteinases from snake venoms. It preferentially cleaved Aa chain of fibrinogen, followed by Bβ chain, while g chain was minimally affected. Monitored by rp-HPLC, it extensively degraded fibrinogen into various peptide fragments. In aqueous solution, acurhagin autoproteolyzed to a 30 kDa-fragment at 37℃. The N-terminal sequence of the 30 kDa-fragment of acurhagin showed a high homology to those proteins consisting of disintegrin-like and cysteine-rich domains. Caseinolytic assay showed that the proteinase activity of acurhagin was slightly enhanced by Ca2+ and Mg2+, but completely inhibited by Zn2+. When treated with metal chelators, acurhagin was completely inactivated. Furthermore, acurhagin exerts an inhibitory effect on ADP-induced platelet aggregation of platelet-rich plasma in an incubation-time dependent manner. It also impairs collagen- and ristocetin-induced platelet aggregation by cleaving collagen and vWf, respectively.
It is concluded that agglucetin derived from Formosan A. acutus venom acts specifically on an epitope of platelet membrane GP Ib overlapping with that of AP1, causing platelet agglutination in a Ca2+-, carbohydrate- and GPIIb/IIIa-independent manner. In addition, we further resolved the full-length cDNA and deduced protein sequences of both β subunits of agglucetin. The complete sequences also help to explain its lack of binding capacity to Ca2+ and carbohydrate. Moreover, agglucetin specifically and directly agglutinates platelets via ligating GPIb and triggers a sequential upregulation of functional αIIbβ3. The activation of protein kinase C and elevation of intracellular Ca2+ level are involved in agglucetin-induced αIIbβ3 activation. However, the precise role of the α or β subunit within an intact molecule for the optimal interaction with GPIb remains to be investigated. Information regarding the complete sequences of α subunits of agglucetin are needed to fully explore its molecular interaction with GPIb. On the other hand, we also isolated a novel P-III class hemorrhagic metalloproteinase, termed acurhagin, and found that it is an effective enzyme in cleaving many extracellular matrices, such as collagen, fibrinogen and vWf. In order to clarify associated issues, we expect to perform further studies on the structure-function relationship of intact agglucetin and acurhagin by X-ray crystallography analysis and rational site-directed mutagenesis in the future.

縮寫表........................................................1

中文摘要......................................................4

英文摘要......................................................9

第一章 緒論..................................................15
1-1 文獻回顧..........................................16
1-2 研究動機與目的....................................25

第二章 一嶄新百步蛇毒之四元體醣蛋白Ib致效劑agglucetin的精製..35
2-1 前言..............................................36
2-2 實驗材料與方法....................................39
2-3 實驗結果..........................................47
2-4 討論..............................................52

第三章 Agglucetin之分子結構與作用機轉的探討..................76
3-1前言...............................................77
3-2實驗材料與方法.....................................79
3-3實驗結果...........................................85
3-4討論...............................................91

第四章 高分子量金屬蛋白acurhagin之精製與作用機轉的探討......114
4-1前言..............................................115
4-2實驗材料與方法....................................118
4-3實驗結果..........................................124
4-4討論..............................................130

第五章 結論與展望...........................................152

參考文獻....................................................165

Adelman B, Michelson AD, Handin RI, Ault KA. Evaluation of platelet glycoprotein Ib by fluorescence flow cytometry. Blood 1985; 66: 423-7.
Andrews RK, Lopez JA, Berndt MC. Molecular mechanisms of platelet adhesion and activation. Int J Biochem Cell Biol 1997; 29: 91-105.
Andrews RK, Berndt MC. Adhesion-dependent signalling and the initiation of haemostasis and thrombosis. Histol Histopathol 1998; 13: 837-44.
Andrews RK, Berndt MC. Snake venom modulators of platelet adhesion receptors and their ligands. Toxicon 2000; 38: 775-91.
Andrews RK, Gorman JJ, Booth WJ, Corino GL, Gastaldi PA, Berndt MC. Cross-linking of a monomeric 39/34-kDa dispase fragment of von Willebrand factor (Leu-480/Val-481-Gly-718) to the N-terminal region of the alpha-chain of membrane glycoproein Ib on intact platelets with bis(sulfosuccinimidyl) suberate. Biochemistry 1989; 28: 8326-36.
Andrews RK, Kroll MH, Ward CM, Rose J W, Scarborough RM, Smith AI, Lopez JA, Berndt MC. Binding of a novel 50-kilodalton alboaggregin from Trimeresurus albolabris and related viper venom proteins to the platelet membrane glycoprotein Ib-IX-V complex. Effect on platelet aggregation and glycoprotein Ib-mediated platelet activation. Biochemistry 1996; 35: 12629-39.
Andrews RK, Lopez JA, Berndt MC. Molecular mechanisms of platelet adhesion and activation. Int J Biochem Cell Biol 1997; 29: 91-105.
Andrews RK, Shen Y, Gardiner EE, Dong JF, Lopez JA, Berndt MC. The glycoprotein Ib-IX-V complex in platelet adhesion and signaling. Thromb Haemost 1999; 82: 357-64.
Asazuma N, Marshall, SJ, Berlanga O, Snell D, Poole AW, Berndt MC, Andrews RK, Watson SP. The snake venom toxin alboaggregin-A activates glycoprotein VI. Blood 2001; 97: 3989-91.
Asch AS, Adelman B, Fujimoto M, Nachman RL. Identification and isolation of a platelet GPIb-like protein in human umbilical vein endothelium cells and bovine aortic smooth muscle cells. J Clin Invest 1988 ; 81: 1600-7.
Beacham DA, Cruz MA, Handin RI. Glycoprotein Ib can mediate endothelial cell attachment to a von Willebrand factor substratum. Thromb Haemost 1995; 73: 309-17.
Beacham DA, Tran LP, Shapiro SS. Cytokine treatment of endothelial cells increase glycoprotein Ibα-dependent adhesion to von Willebrand factor. Blood 1997; 89: 4071-7.
Berndt MC, Shen Y, Dopheide SM, Gardiner EE, Andrews RK. The vascular biology of the glycoprotein Ib-IX-V complex. Thromb Haemost 2001; 86: 178-88.
Berndt MC, Ward CM, Booth WJ, Castaldi PA, Mazurov AV, Andrews RK. Identification of aspartic acid 514 through glutamic acid 542 as a glycoprotein Ib-IX complex receptor recognition sequence in von Willebrand factor. Mechanism of modulation of von Willebrand factor by ristocetin and botrocetin. Biochemistry 1992; 31: 11144-51.
Bertolino G, Noris P, Spedini P, Balduini CL. Ristocetin-induced platelet agglutination stimulates GPIIb/IIIa-dependent calcium influx. Thromb Haemost 1995; 73: 689-92.
Bjarnason JB, Fox JW. Hemorrhagic metalloproteinases from snake venoms. Pharmac Ther 1994: 62: 325-72.
Cauwenberghs N, Vanhoorelbeke K, Vauterin S, Westra DF, Romo G, Huizinga EG, Lopez JA, Berndt MC, Harsfalvi J, Deckmyn H. Epitope mapping of inhibitory antibodies against platelet glycoprotein Ibα reveals interaction between the leucine-rich repeat N-terminal and C-terminal flanking domains of glycoprotein Ibα. Blood 2001; 98: 652-60.
Chang MC, Huang TF. Characterization of a thrombin-like enzyme, grambin, from the venom of Trimeresurus gramineus and its in vivo antithrombotic effect. Toxicon 1995; 33: 1087-98.
Chen Y L, Tsai IH. Functional and sequence characterization of agkicetin, a new glycoprotein Ib antagonist isolated from Agkistrodon acutus venom. Biochem Biophys Res Commun 1995; 210: 472-7.
Chen YL, Tsai IH. Functional and sequence characterization of agkicetin, a new glycoprotein Ib antagonist isolated from Agkistrodon acutus venom. Biochem Biophys Res Commun 1995; 210: 472-7.
Chen YL, Tsai KW, Chang T, Hong TM, Tsai IH. Glycoprotein Ib-binding protein from the venom of Deinagkistrodon acutus - cDNA sequence, functional characterization, and three-dimensional modeling. Thromb Haemost 2000; 83: 119-26.
Chowdhury MAR, Miyoshi SI, Shinoda S. Purification and characterization of a protease produced by Vibrio mimicus. Infect Immun 1990; 58: 4159-62.
Clemetson KJ, Clemetson JM. Platelet GPIb-V-IX complex - structure, function, physiology, and pathology. Seimin Thromb Haemost 1995; 21: 130-6.
Clemetson KJ. Platelet activation: signal transduction via membrane receptors. Thromb Haemost 1995; 74: 111-6.
Clemetson KJ. Platelet GpIb-V-IX complex. Thromb Haemost 1997; 78: 266-70.
Coller BS, Peerschke EI, Scudder LE, Sullivan CA. Studies with a murine monoclonal antibody that abolishes ristocetin-induced binding of von Willebrand factor to platelets: additional evidence in support of GPIb as a platelet receptor for von Willebrand factor. Blood 1983; 61: 99-110.
Coller BS. A new murine monoclonal antibody reports an activation-dependent change in the conformation and/or microenvironment of the platelet glycoprotein IIb/IIIa complex. J Clin Invest 1985; 76: 101-8.
Coller BS. Monitoring platelet GP IIb/IIIa antagonist therapy. Circulation 1998; 97: 5-9.
Dormann D, Clemetson JM, Navdaev A, Kehrel BE, Clemetson KJ. Alboaggregin A activates platelets by a mechanism involving glycoprotein VI as well as glycoprotein Ib. Blood 2001; 97: 929-36.
Falati S, Edmead CE, Poole AW. Glycoprotein Ib-V-IX, a receptor for von Willebrand factor, couples physically and functionally to the Fc receptor gamma-chain, Fyn, and Lyn to activate human platelets. Blood 1999; 94: 1648-56.
Fox JEB, Berndt MC. Cyclic AMP-dependent phosphorylation of glycoprotein Ib inhibits collagen-induced polymerization of actin in platelets. J Biol Chem 1989; 264: 9520-6.
Fujimura S, Oshikawa K, Terada S, Kimoto E. Primary structure and autoproteolysis of brevilysin H6 from the venom of Gloydius halys brevicaudus. J Biochem 2000; 128: 167-73.
Fujimura Y, Ikeda Y, Miura S, Yoshida E, Shima H, Nishida S, Suzuki M, Titani K, Taniuchi Y, Kawasaki T. Isolation and characterization of Jararaca GPIb-BP, a snake venom antagonist specific to platelet glycoprotein Ib. Thromb Haemost 1995; 74: 743-50.
Fujimura Y, Kawasaki T, Titani K. Snake venom proteins modulating the interaction between von Willebrand factor and platelet glycoprotein Ib. Thromb Haemost 1996; 76: 633-9.
Fukuda K, Mizuno H, Atoda H, Morita T. Crystal structure of flavocetin-A, a platelet glycoprotein Ib-binding protein, reveals a novel cyclic tetramer of C-type lectin-like heterodimers. Biochemistry 2000; 39: 1915-23.
Gabius HJ. Animal lectins. Eur J Biochem 1997; 243: 543-76.
Gong WM, Zhu XY, Liu SJ, Teng MK. Crystal structure of acutolysin A, a three-disulfide hemorrhagic zinc metalloproteinase from the snake venom of Agkistrodon acutus. J Mol Biol 1998; 283: 657-68.
Gould RJ, Polokoff MA, Friedman PA, Huang TF, Holt JC, Cook JJ, Niewiarowski S. Disintegrins: A family of integrin inhibitory proteins from viper venoms. Proc Soc Exp Biol Med 1990; 195: 168-71.
Grynkiewicz G, Poenie M, Tsien RY. A new generation of Ca2+ indicators with greatly improved fluorescence properties. J Biol Chem 1985; 260: 3440-50.
Hamako J, Matsui T, Nishida S, Nomura S, Fujimura Y, Ito M, Ozeki Y, Titani K. Purification and characterization of kaouthiagin, a von Willebrand factor-binding and-cleaving metalloproteinase from Naja kaouthia cobra venom. Thromb Haemost 1998; 80: 499-505.
Handa M, Titani K, Holland LZ, Roberts JR, Ruggeri ZM. The von Willebrand factor-binding domain of platelet membrane glycoprotein Ib - characterization by monoclonal antibodies and partial amino acid sequence analysis of proteolytic fragments. J Biol Chem 1986; 261: 12579-85.
Hiller O, Lichte A, Oberpichler A, Kocourek A, Tschesche H. Matrix metalloproteinases collagenase-2, macrophage elastase, collagenase-3, and membrane Type 1-matrix metalloproteinase impair clotting by degradation of fibrinogen and factor XII. J Biol Chem 2000; 275: 33008-13.
Hite LA, Shannon JD, Bjarnason JB, Fox JW. Sequence of a cDNA clone encoding the zinc metalloproteinase hemorrhagic toxin e from Crotalus atrox: evidence for signal, zymogen, and disintegrin-like structures. Biochemistry 1992; 31: 6203-11.
Huang TF, Sheu JR, Teng CM. A potent antiplatelet peptide, triflavin, from Trimeresurus flavoviridis snake venom. Biochem J 1991; 277: 351-7.
Huang TF, Wang WJ, Teng CM, Liu CS, Ouyang C. Purification and characterization of an antiplatelet peptide, arietin, from Bitis arietans venom. Biochim Biophys Acta 1991; 1074: 136-43.
Ito M, Hamako J, Sakurai Y, Matsumoto M, Fujimura Y, Suzuki M, Hashimoto K, Titani K, Matsui T. Complete amino acid sequence of kaouthiagin, a novel cobra venom metalloproteinase with two disintegrin-like sequences. Biochemistry 2001; 40: 4503-11.
Ivaska J, Kapyla J, Pentikainen O, Hoffren AM, Hermonen J, Huttunen P, Johnson MS, Heino J. A peptide inhibiting the collagen binding function of integrin α2 I domain. J Biol Chem 1999; 274: 3513-3521.
Jia LG, Shimokawa KI, Bjarnason JB, Fox JW. Snake venom metalloproteinases: structure, function and relationship to the ADAMs family of proteins. Toxicon 1996; 34: 1269-76.
Jia LG, Wang XM, Shannon JD, Bjarnason JB, Fox JW. Function of disintegrin-like/cysteine-rich domains of atrolysin A. J Biol Chem 1997; 272: 13094-102.
Jy W, Horstman LL, Park H, Mao WW, Valant P, Ahn YS. Platelet aggregates as makers of platelet activation: characterization of flow cytometric method suitable for clinical applications. Am J Hematol 1998; 57: 33-42.
Kamiguti AS, Hay CRM, Theakston RDG, Zuzel M. Insights into the mechanism of haemorrhage caused by snake venom metalloproteinases. Toxicon 1996; 34: 627-42.
Kawasaki T, Fujimura Y, Usami Y, Suzuki M, Miura S, Sakurai Y, Makita K, Taniuchi Y, Hirano K, Titani K. Complete amino acid sequence and identification of the platelet glycoprotein Ib-binding site of jararaca GPIb-BP, a snake venom protein isolated from Bothrops jararaca. J Biol Chem 1996; 271: 10635-39.
Kawasaki T, Taniuchi Y, Hisamichi N, Fujimura Y, Suzuki M, Titani K, Sakai Y, Kaku S, Satoh N, Takenaka T, Handa M, Sawai Y. Tokaracetin, a new platelet antagonist that binds to platelet glycoprotein Ib and inhibits von Willebrand factor-dependent shear-induced platelet aggregation. Biochem J 1995; 308: 947-53.
Kini RM, Zhang CY, Tan BKH. Pharmacological activity of the interdomain segment between metalloproteinase and disintegrin domains. Toxicon 1997; 35: 529-35.
Kini RM. Are C-type lectin-related proteins derived by proteolysis of metalloproteinase/disintegrin precursor proteins? Toxicon 1996; 34: 1287-94.
Kirby EP, Mills DCB. The interaction of bovine factor VIII with human platelets. J Clin Invest 1975; 56: 491-502.
Kondo H, Kondo S, Ikezawa H, Murata R. Studies on the quantitative method for determination of hemorrhagic activity of Habu snake venom. Jap J M Sc & Biol 1960; 13: 43-51.
Konkle BA, Shapiro SS, Asch AS, Nachman RL. Cytokine-enhanced expression of glycoprotein Ibαin human endothelium. J Biol Chem 1990; 265: 19833-8.
Kornecki E, Ehrlich YH, De Mars DD, Lenox RH. Exposure of fibrinogen receptors in human platelets by surface proteolysis with elastase. J Clin Invest 1986; 77: 750-6.
Kowalska MA, Tan L, Holt JC, Peng M, Karczewski J, Calvete JJ, Niewiarowski S. Alboaggregins A and B - structure and interaction with human platelets. Thromb Haemost 1998; 79: 609-13.
Kowalska MA, Tan L, Holt JC, Peng M, Karczewski J, Calvete JJ, Niewiarowski S. Alboaggregins A and B - structure and interaction with human platelets. Thromb Haemost 1998; 79: 609-13.
Kroll MH, Hellums JD, Guo Z, Durante W, Razdan K, Hrbolich JK, Schafer, AI. Protein kinase C is activated in platelets subjected to pathological shear stress. J Biol Chem 1993; 268: 3520-24.
Latallo ZS. Retrospective study on complications and adverse effects of treatment with thrombin-like enzymes - a multicentre trial. Thromb Haemost 1983; 50: 604-9.
Leduc M, Bon C. Cloning of subunits of convulxin, a collagen-like platelet-aggregating protein from Crotalus durissus terrificus venom. Biochem J 1998; 333: 389-93.
Li Z, Xi X, Du X. A mitogen-activated protein kinase-dependent signaling pathway in the activation of platelet integrin αIIbβ3. J Biol Chem 2001; 276: 42226-32.
Liu CZ, Huang TF. Crovidisin, a collagen-binding protein isolated from snake venom of Crotalus viridis, prevents platelet-collagen interaction. Arch Biochem Biophys 1997; 337: 291-9.
Liu CZ, Wang YW, Shen MC, Huang TF. Analysis of human platelet glycoprotein IIb-IIIa by fluorescein isothiocyanate-conjugated disintegrins with flow cytometry. Thromb Haemost 1994; 72: 919-25.
Lopez JA, Andrews RK, Afshar-Kharghan V, Berndt MC. Bernard-Soulier syndrome. Blood 1998; 91:4397-418.
Mackessy ST. Characterization of the major metalloprotease isolated from the venom of the northern Pacific rattlesnake, Crotalus viridis oreganus. Toxicon 1996; 34: 1277-85.
Madan M, Berkowitz SD, Tcheng JE. Glycoprotein IIb/IIIa integrin blockade. Circulation 1998; 98: 2629-35.
Markland FS. Snake venoms and the hemostatic system. Toxicon 1998; 36: 1749-1800.
Matsui T, Fujimura Y, Titani K. Snake vemon proteases affecting hemostasis and thrombosis. Biochim Biophys Acta 2000; 1477: 146-56.
McEver RP. Adhesive interactions of leukocytes, platelets, and the vessel wall during hemostasis and inflammation. Thromb Haemost 2001; 86: 746-56.
Moura-da-Silva AM, Linica A, Della-Casa MS, Kamiguti AS, Ho PL, Crampton JM, Theakston RDG. Jararhagin ECD-containing disintegrin domain: expression in Escherichia coli and inhibition of the platelet-collagen interaction. Arch Biochem Biophys 1999; 369: 295-301.
Munday AD, Berndt MC, Mitchell CA. Phosphoinositide 3-kinase forms a complex with platelet membrane glycoprotein Ib-IX-V complex and 14-3-3ζ. Blood 2000; 96: 577-84.
Mustard JF, Perry DW, Ardlie NG, Packham MA. Preparation of suspension of washed platelet from humans. Br J Haemato 1972; 122: 193-204.
Navdaea A., Dormann D, Clemetson JM, Clemetson KJ. Echicetin, a GPIb-binding snake C-type lectin from Echis carinatus, also contains a binding site for IgMκ responsible for platelet agglutination in plasma and inducing signal transduction. Blood 2001; 97: 333-41.
Navdaev A, Clemetson JM, Polgar J, Kehrel BE, Gauner M, Magnenat E, Wells TNC, Clemetson KJ. Aggretin, a heterodimeric C-type lectin from Calloselasma rhodostoma (Malayan pit viper), stimulates platelets by binding to α2β1 integrin and glycoprotein Ib, activating Syk and phospholipase Cγ2, but does not involve the glycoprotein VI/Fc receptor γchain collagen receptor. J Biol Chem 2001; 276: 20882-9.
Newman PJ, Allen RW, Kahn RA, Kunicki TJ. Quantitation of membrane glycoprotein IIIa on intact human platelets using the monoclonal antibody, AP-3. Blood 1985; 65: 227-32.
Obert B, Houllier A, Mayer D, Girma JP. Conformational changes in the A3 domain of von Willebrand factor modulate the interaction of the A1 domain with platelet glycoprotein Ib. Blood 1999; 93: 1959-68.
Okita JR, Pidard D, Newman PJ, Montgomery RR, Kunicki TJ. On the association of glycoprotein Ib and actin-binding protein in human platelets. J Cell Biol 1985; 100: 317-21.
Ouyang C, Teng CM, Huang TF. Characterization of snake venom components acting on blood coagulation and platelet function. Toxicon 1992; 30: 945-66.
Paine MJI, Desmond HP, Theakston RDG, Crampton JM. Purification, cloning and molecular characterization of a high molecular weight hemorrhagic metalloprotease, jararhagin, from Bothrops jararaca venom. J Biol Chem 1992; 267: 22869-76.
Peng M, Holt JC, Niewiarowski S. Isolation, characterization and amino acid sequence of echicetin b subunit, a specific inhibitor of von Willebrand factor and thrombin interaction with glycoprotein Ib. Biochem Biophys Res Commun 1994; 205: 68-72.
Peng M, Lu W, Beviglia L, Niewiarowski S, Kirby EP. Echicetin: a snake venom protein that inhibits binding of von Willebrand factor and alboaggregins to platelet glycoprotein Ib. Blood 1993; 81: 2321-8.
Peng M, Lu W, Kirby EP. Alboaggregin-B: a new platelet agonist that binds to platelet membrane glycoprotein Ib. Biochemistry 1991; 30: 11529-36.
Peng M, Lu W, Kirby EP. Characterization of three alboaggregins purified from Trimeresurus albolabris venom. Thromb Haemost 1992; 67: 702-7.
Perrault C, Ajzenberg N, Legendre P, Rastegar-Lari G, Meyer D, Lopez JA, Baruch D. Modulation by heparin of the interaction of the A1 domain of von Willebrand factor with glycoprotein Ib. Blood 1999; 94: 4186-94.
Pidard D, Montgomery RR, Bennett JS, Kunicki TJ. Interaction of AP2, a monoclonal antibody specific for the human platelet glycoprotein IIb-IIIa complex, with intact platelets. J Biol Chem 1983; 258: 12582-6.
Pirkle H, Stocker K. Thrombin-like enzymes from snake venoms: an inventory. Thromb Haemost 1991; 65: 444-50.
Polgar J, Clemetson JM, Kehrel BE, Widemann M, Magnenat EM, Wells TNC, Clemetson KJ. Platelet activation and signal transduction by convulxin, a C-type lectin from Crotalus durissus terrificus (tropical rattlesnake) venom via the p62/GPVI collagen receptor. J Biol Chem 1997a; 272: 13576-83.
Polgar J, Magnenat EM, Peitsch MC, Wells TNC, Saqi MSA, Clemetson KJ. Amino acid sequence of the a subunit and computer modelling of the a and b subunits of echicetin from the Echis carinatus. Biochem J 1997b; 323: 533-7.
Pollock WK, Rink TJ. Thrombin and ionomycin can raise platelet cytosolic ca2+ to micromolar levels by discharge of internal Ca2+ stores: studies using fura-2. Biochem Biophys Res Commun 1986; 139: 308-14.
Sakariassen KS, Bolhuis PA, Sixma JJ. Human blood platelet adhesion to artery subendothelium is mediated by factor Ⅷ-vWf bound to the subendothelium. Nature 1979; 279: 636-8.
Sakurai Y, Fujimura Y, Kokubo T, Imamura K, Kawasaki T, Honda, M, Suzuki M, Matsui T, Titani K, Yoshioka A. The cDNA cloning and molecular characterization of a snake venom platelet glycoprotein Ib-binding protein, mamushigin, from Agkistrodon halys blomhoffii venom. Thromb Haemost 1998; 79: 1199-207.
Savage B, Almus-Jacobs F, Rugger ZM. Specific synergy of multiple substrate-receptor interactions in platelet thrombus formation under flow. Cell 1998; 94: 657-66.
Shattil S J, Cunningham M, Hoxie JA. Detection of activated platelets in whole blood using activation-dependent monoclonal antibodies and flow cytometry. Blood 1987; 70: 307-15.
Shimokawa KI, Jia LG, Shannon JD, Fox JW. Isolation, sequence analysis, and biological activity of atrolysin E/D, the Non-RGD disintegrin domain from Crotalus atrox venom. Arch Biochem Biophys 1998; 354: 239-46.
Shimokawa KI, Jia LG, Wang XM, Fox JW. Expression, activation, and processing of the recombinant snake venom metalloproteinase, pro-atrolysin E. Arch Biochem Biophys 1996; 335: 283-94.
Shimokawa KI, Shannon JD, Jia LG, Fox JW. Sequence and biological activity of catrocollastatin-C: a disintegrin-like/cysteine-rich two-domain protein from Crotalus atrox venom. Arch Biochem Biophys 1997; 343: 35-43.
Simon DI, Chen Z, Xu H, Li CQ, Dong J, McIntire LV, Ballantyne CM, Zhang L, Furman MI, Berndt MC, Lopez JA. Platelet glycoprotein Iba is a counterreceptor for the leukocyte integrin Mac-1 (CD11b/CD18). J Exp Med 2000; 192: 193-204.
Schulte am Esch J, 2nd, Cruz MA, Siegel JB, Anrather J, Robson SC. Activation of human platelets by the membrane-expressed A1 domain of von Willebrand factor. Blood 1997; 90: 4425-37.
Sullam PM, Hyun WC, Szollosi J, Dong J, Foss WM, Lopez JA. Physical proximity and functional interplay of the glycoprotein Ib-IX-V complex and the Fc receptor FcgammaRIIA on the platelet plasma membrane. J Biol Chem 1998; 273: 5331-6.
Takeya H, Nishida S, Nishino N, Makinose Y, Omori-Satoh T, Nikai T, Sugihara H, Iwanaga S. Primary structures of platelet aggregation inhibitors (disintegrins) autoproteolytically released from snake venom hemorrhagic metalloproteinases and new fluorogenic peptide substrates for these enzymes. J Biochem 1993; 113: 473-83.
Takeya H, Oda K, Miyata T, Omori-Satoh T, Iwanaga S. The complete amino acid sequence of the high molecular mass hemorrhagic protein HR1B isolated from the venom of Trimeresurus flavoviridis. J Biol Chem 1990; 265: 16068-73.
Taniuchi Y, Kawasaki T, Fujimura Y, Suzuki M, Titani K, Sakai Y, Kaku S, Hisamichi N, Satoh N, Takenaka T, Handa M, SawaiY. Flavocein-A and —B, two high molecular mass glycoprotein Ib binding proteins with high affinity purified from Trimeresurus flavoviridis venom, inhibit platelet aggregation at high shear stress. Biochim Biophys Acta 1995; 1244: 331-8.
Taniuchi Y, Kawasaki T, Fujimura, Y. The high molecular mass, glycoprotein Ib-binding protein flavocetin-A induces only small aggregates in vitro. Thromb Res 2000; 97: 69-75.
Topol EJ, Byzova TV, Plow EF. Platelet GPIIb-IIIa blockers. Lancet 1999; 353: 227-31.
Torti M, Bertoni A, Canobbio I, Sinigaglia F, Lapetina EG, Balduini C. Rap1B and Rap2B translocation to the cytoskeleton by von Willebrand factor involves Fcgamma II receptor-mediated protein tyrosine phosphorylation. J Biol Chem 1999; 274: 13690-7.
Tsai IH, Wang YM, Chiang TY, Chen YL, Huang RJ. Purification, cloning and sequence analyses for pro-metalloprotease-disintegrin variants from Deinagkistrodon acutus venom and subclassfication of the small venom metalloproteases. Eur J Biochem 2000; 267: 1359-67.
Usami Y, Fujimura Y, Miura S, Shima H, Yoshida E, Yoshioka A, Hirano K, Suzuki M, Titani K. A 28 kDa-protein with disintegrin-like structure (jararhagin-C) purified from Bothrops jararaca venom inhibits collagen- and ADP-induced platelet aggregation. Biochem Biophys Res Commun 1994; 201: 331-9.
Usami Y, Fujimura Y, Suzuki M, Ozeki Y, Nishio K, Fukui H, Titani K. Primary structure of two-chain botrocetin, a von Willebrand factor modulator purified from the venom of Bothrops jararaca. Proc Natl Acad Sci 1993; 90: 928-32.
Usami Y, Suzuki M, Yoshida E, Sukurai Y, Hirano K, Kawsaki T, Fujimura Y, Titani K. Primary structure of alboaggregin-B purified from the venom of Trimeresurus albolabris. Biochem Biophys Res Commun 1996; 219: 727-33.
Vlot AJ, Koppelman SJ, Bouma BN, Sixma JJ. Factor VIII and von Willebrand factor. Thromb Haemost 1998; 79: 456-65.
Von Heijne G. Patterns of amino acids near signal-sequence cleavage sites. Eur J Biochem 1983; 133: 17-21.
Wang WJ, Huang TF. A novel tetrameric venom protein, agglucetin from Agkistrodon acutus, acts as a glycoprotein Ib agonist. Thromb Haemost 2001; 86: 1077-86.
Wang YM, Wang SR, Tsai IH. Serine protease isoforms of Deinagkistrodon acutus venom: cloning, sequencing and phylogenetic analysis. Bichem J 2001; 354: 161-8.
Ward CM, Andrews RK, Smith AI, Berndt MC. Mocarhagin, a novel cobra venom metalloproteinase, cleaves the platelet von Willebrand factor receptor glycoprotein Iba. Identification of the sulfated tyrosine/anionic sequence Tyr-276-Glu-282 of glycoprotein Iba as a binding site for von Willebrand factor and a-thrombin. Biochemistry 1996a; 35: 4929-38.
Ward CM, Vinogradov DV, Andrews RK, Berndt MC. Characterization of mocarhagin, a cobra venom metalloproteinase from Naja mocambique mocambique, and related proteins from other Elapidae venoms. Toxicon 1996b; 34: 1203-6.
Wardell MR, Reynolds CC, Berndt MC, Wallance RW, Fox JEB. Platelet glycoprotein Ibβ is phosphorylated on serine 166 by cyclic AMP-dependent protein kinase. J Biol Chem 1989; 264: 15656-61.
Ware J, Russel SR, Marchese P, Murata M, Mazzucato M, Marco LD, Ruggeri ZM. Point mutation in a leucine-rich repeat of platelet glycoprotein Iba resulting in the Bernard-Soulier syndrome. J Clin Invest 1993; 92: 1213-1220.
Ware J. Molecular analyses of the platelet glycoprotein Ib-IX-V receptor. Thromb Haemost 1998; 79: 466-78.
Weis WI, Drickamer K, Hendrickson WA. Structure of a C-type mannose-binding protein complexed with an oligosaccharide. Nature 1992; 360:127-34.
Weis WI, Kahn R, Fourme R, Drickamer K, Hendrickson WA. Structure of the calcium-dependent lectin domain from a rat mannose-binding protein determined by MAD phasing. Science 1991; 254: 1608-15.
Willis TW, Tu AT. Purification and biochemical characterization of atroxase, a nonhemorrhagic fibrinolytic protease from western diamondback rattlesnake venom. Biochemistry 1988; 27: 4769-77.
Wu G, Essex DW, Meloni FJ, Takafuta T, Fujimura K, Konkle BA, Shapiro SS. Human endothelium cells in culture and in vivo express on their surface all for components of the glycoprotein Ib/IX/V complex. Blood 1997; 90: 2660-9.
Wu WB, Chang SC, Liau MY, Huang TF. Purification, molecular cloning and mechanism of action of graminelysin I, a snake-venom-derived metalloproteinase that induces apotosis of human endothelial cells. Biochem J 2001; 357: 719-28.
Wu WB, Peng HC, Huang TF. Crotalin, a vWF and GPIb cleaving metalloproteinase from venom of Crotalus atrox. Thromb Haemost 2001; 86: 1501-11.
Xiuxia L, Jiashu C, Yingna Z, Pengxin Q, Guangmei Y. Purification and biochemical characterization of F IIa, a fibrinolytic enzyme from Agkistrodon acutus venom. Toxicon 2001, 39: 1133-9.
Yamada D, Shin Y, Morita T. Nucleotide sequence of a cDNA encoding a common precusor of disintegrin flavostatin and hemorrhagic factor HR2a from the venom of Trimeresurus flavoviridis. FEBS Letters 1999; 451: 299-302.
Yeh CH, Chang MC, Peng HC, Huang TF. Pharmacological characterization and antithrombotic effect of agkistin, a platelet glycoprotein Ib antagonist. Br J Pharm 2001; 132: 843-850.
Yeh CH, Wang WC, Hsieh TT, Huang TF. Agkistin, a snake venom-derived glycoprotein Ib antagonist, disrupts von Willebrand factor-endothelium cell interaction and inhibits angiogenesis. J Biol Chem 2000; 275: 18615-8.
Zhang JJ, Chen ZX, He YZ, Xu X. Effect of calcium on proteolytic activity and conformation of hemorrhagic toxin I from five pace snake (Agkistrodon acutus) venom. Toxicon 1984; 22: 931-5.
Zhou Q, Dangelmaier C, Smith JB. The hemorrhagin catrocollastatin inhibits collagen-induced platelet aggregation by binding to collagen via its disintegrin-like domain. Biochem Biophys Res Commun 1996; 219: 720-6.
Zhou Q, Smith JB, Grossman MH. Molecular cloning and expression of catrocollastatin, a snake-venom protein from Crotalus atrox (western diamondback rattlesnake) which inhibits platelet adhesion to collagen. Biochem J 1995; 307: 411-7.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔