(54.236.58.220) 您好!臺灣時間:2021/03/05 05:46
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:周瑞益
研究生(外文):Jui-Yi Chou
論文名稱:藥化合成物的抗癌活性與GO-13抗癌機轉的探討
論文名稱(外文):Determination of anticancer activities of several chemical synthetic compounds and investigation of GO-13 mediated anticancer mechanism
指導教授:顧記華顧記華引用關係
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:藥學研究所
學門:醫藥衛生學門
學類:藥學學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:90
中文關鍵詞:抗癌抗血管新生細胞凋亡Bcl-2 蛋白Bax蛋白caspase家族肺癌非小細胞型肺癌細胞株
外文關鍵詞:anticancerantiangiogenesisapoptosisBcl-2Baxcaspaselung cancerA549
相關次數:
  • 被引用被引用:0
  • 點閱點閱:147
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:2
癌症是現今許多國家中重要的問題之一,近年來癌症是台灣十大死亡原因的首位。然,肺癌是全部癌症死亡人口中的第一位,每年全世界約將近一百萬人死於肺癌。目前針對肺癌臨床的治療策略被相繼的發展出來,而發展出針對治療固態性癌症的機轉除了促使癌細胞產生凋亡反應外,另一機轉則是抑制癌細胞的血管增生;或者同時並有促使癌細胞產生凋亡與抑制癌細胞的血管增生。
於我們的研究中,以非小細胞型肺癌(Non-small cell lung cancer),A549 細胞株當做標的細胞,將多種合成化合物做初步抗癌活性篩選,用MTT分析其細胞毒殺率。由實驗結果發現,GO-13是最具有癌細胞毒殺作用的化合物。由lactate dehydrogenase釋放作用實驗、 Annexin-V-labeling和TUNEL的強螢光免疫反應及顯微鏡下的細胞型態觀察,得知GO-13合成化合物可促使非小細胞型肺癌細胞產生細胞凋亡。其半致死量(IC50)是 6.8 μM,而細胞凋亡作用具有時間與濃度依賴性(time and concentration—dependent)。更進一步以功能性的定量研究及西方墨點法分析發現,經GO-13合成化合物誘導非小細胞型肺癌細胞所產生細胞凋亡的機制中除了自由基有參與調控外,Ras、 p38 mitogen-activated protein kinase、protein kinase C 和phospatidylinositol 3-inase並沒有扮演重要的調控角色。
由西方墨點法實驗中得知:非小細胞型肺癌細胞本身並沒有BcL-2
蛋白的表現。然而,我們可明顯的觀察到經由GO-13所誘導產生細胞凋亡的機制中,短時間的作用(3小時內)便可使Bcl-XL蛋白的表現減少,而長時間(大於7小時)可促使Bax蛋白表現增加;此外,GO-13也會活化caspase-3 的活性。有趣的是,我們於血管增生的裸鼠實驗中觀察到,GO-13可有效抑制vascular endothelium growth factor引發的血管增生作用。
總結:GO-13可經由引發Bcl-2 down-regulation、Bax up- regulation及caspase-3 的活化,而來引起A549細胞的凋亡作用。此外,GO-13在裸鼠的動物模式,也能有效的抑制血管新生作用。

Cancer is one of the serious problems in many countries. In the recent years, it has been the most important causative factor causing deaths in Taiwan. Lung cancer is one of the predominant leading causes in human cancer death, accounting for the lives of more than a million people yearly worldwide. Therefore, several strategies for the clinical therapies have been raised. For the treatment of solid tumors, the chemotherapies, such as the apoptotic and antiangiogenetic agents or the combination of both are developed. In the present work, we examined the synthetic compounds obtained form Dr. Chern on the cytotoxic activities in human lung carcinoma A549 cells by MTT assay. The data demonstrated that GO-13 is the most effective one among these compound to induce the cytotoxic effect in A549 cells. Furthermore, GO-13 induced cytotoxicity was identified to be the apoptotic reaction base on several criteria: negative release reaction of lactate dehydrogenase (LDH), morphology characterization, positive Annexine-V-labeling and TUNEL response. GO-13 induced the apopototic reaction in a time and concentration dependent manner with an IC50 value of 6.8 μM.
Furthermore, using several functional assays and Western blotting detection, the results demonstrated that the regulation of Ras, p38 mitogen-activated protein kinase, protein kinase C and phosphatidylinosi-
tol 3-kinase activities did not involve in the GO-13-mediated apoptotic mechanism but except for the free radical regulation.
In this study, there is no Bcl-2 protein expression and two survival-
related proteins were detected following the administration of GO-13 in A549 cells. Bcl-XL protein is well identified to be the crucial survival protein whereas Bax, the apoptotic protein in a lot of cells. GO-13 induced the significant down-regulation of BcL-XL expression within the short time period (3 hr) and the profound up-regulation of Bax expression in a long-term treatment (more than 7 hr). GO-13-induced apopotosis was also positively correlated with the increase in caspase-3 activity. Interestingly, GO-13 (10 μM) showed a modest but significant inhibition on vascular endothelium growth factor (VEGF)-induced angiogenic effect in nude mice models. In summary, we suggest that GO-13 induced the apoptotic reaction via the BcL-XL down-regulation, Bax up-regulation, and the following caspase-3 activation in A549 cells. Furthermore, GO-13 also exhibits the antiangiogenic effect in the nude mice model.

目錄
縮寫表……………………………………………………………………I
中文摘要………………………………………………………………..IV
英文摘要………………………………………………………………..VI
研究動機與目的……………………………………………………...VIII
文獻回顧…………………………………………………………………1
實驗材料與方法………………………………………………………..22
一、 實驗材料…………………………………………………22
二、 細胞培養…………………………………………………23
三、 實驗方法…………………………………………………28
結果……………………………………………………………………..36
討論……………………………………………………………………..43
結論……………………………………………………………………..51
圖表……………………………………………………………………..52
參考文獻………………………………………………………………..67

參考文獻
Adams J. M., Cory S., Life-or-death decisions by the Bcl-2 protein family. Trends Biochem. Sci. 2001; 26:61-66.
Amin H. M., Ergin M., Denning M. F., Quevedo M. F., Alkan S., Characterization of apoptosis induced by protein kinase C inhibitors and its modulation by the caspase pathway in acute promyelocytic leukaemia. Br. J. of Haematol. 2000; 110:552-562.
Antonsson B., Martinou J. C, The Bcl-2 protein family, Experi. Cell Res. 2000; 256:50-57.
Antonsson B., Conti F., Ciavatta, A., Montessuit S., Lewis S., Marundrell I., Bernasconi L., Bernard A., Mermod J. J., Mazzei G., Maundrell K., Gambale F., Sadoul R., Martinou J. C., Inhibition of Bax channel-forming activity by Bcl-2. Science 1997; 277:370-372.
Bojies H. K., Suresh P. K., Mill E. M., Spitz D. R., Sim J. E., Kehrer J. P., Bcl-2 and Bcl-XL in peroxide-resistant A549 and U87MG cells. Toxicol. Sci. 1998; 42:109-116.
Bonomi P., Novel approaches for the treatment of non-small cell lung cancer. Semin. Oncol. 2001; 28:S45-S49.
Bortner C. D., Oldenburg N. B. E., Cidlowski J. A., The role of DNA fragmentation in apoptosis. Trends cell Biol. 1995; 5:21-26.
Bratton S. B., Macfarlane M., Cain K., Cohen G. M., Protein complexes activate distinct caspase cascades in death receptor and stress-induced apoptosis. Experi. Cell Res. 2000; 256:27-33.
Carmeliet P., Jain R. K., Angiogenesis in cancer and other diseases. Nature 2000; 407:249-257.
Cao Y., Endogenous angiogenesis inhibitors and their therapeutic implications. Int. J. Biochem. Cell Biol. 2001; 33:357-69.
Chandra J., Samali A., Orrenius S., Triggering and modulation of apoptosis by oxidative stress. Free Radical Biol. Med. 2000; 29:323-333.
Ciardiello F., Tortora G., A novel approach in the treatment of cancer: targeting the epidermal growth factor receptor, Clin. Cancer Res. 2001; 7:2958-2970.
Choy H. and MacRae R., The current state of paclitaxel and radiation in the combined modality therapy of non-small cell lung cancer. Semin. Oncol. 2001; 28 suppl:17-22.
Clemens A. S., Scott W. L., Apoptosis and therapy. J. Pathol. 1999; 187: 127-137.
Crompton M., Bax, Bid and permeabilization of the mitochondrial outer membrane in apoptosis. Curr. Opin. Cell Biol. 2000; 12:414-419.
Dlugosz A. A., Cheng C., Williams E. K., Dharia A. G., Denning M. F., Yuspa S. H., Alterations in murine keratinocyte differentiation induced by activated rasHa gene are mediated by protein kinase C-alpha. Cancer Res. 1999; 54:6413-6420.
Douglas R. G., John C. R., Mitochondria and apoptosis. Science 1998; 281:1309-1312.
.
Engeland E., Nieland L. J. W., Ramekers F. C. S., Schutte B. and Reutelingsperger C. P. M., Annexin-V affinity assay: a review on apoptosis detection system based on phosphatidyserine exposure. Cytometer. 1998; 31:1-9.
Fanger G. R., Gerwins P., Widmann C., Jarpe M. B., Johnson G. L., MEKKs, GCKs, MLKs, PAKs, and TPLs: upstream regulation of the c-Jun amino-terminal kinases? Curr.Biol. 1997; 273:1839-1842.
Fine A., Heininger Y. J., Soultanakis R. P., Swisher S. G., Uhal B. D., Apoptosis in lung pathophysiology. Am. J. Physiol. Lung Cell Mol. physiol. 2000; 279:L423-L427.
Garrington T. P., Johnson G. L., Organization and regulation of mitogem-activity protein kinase signaling pathways. Curr. Opin. Cell Biol. 1999; 11:211-218.
Gavrieli Y., Sherman Y., Ben-Sasson S. A., Identification of programmed cell death in situ via specific labeling of nuclear DNA fragmentation. J. Cell Biol. 1992; 119:493-501.
Green D. S., Reed J. C., Mitochondria and Appotosis. Science 1998; 28:1309-1312.
Greenlee R. T., Murry T., Bolden S., Wingo P. A., Cancer Statistics 2000. CA Cancer J. Clin. 2000; 50:7-33.
Gross A., McDonnell J. M., Korsmeyer S. J., BCL-2 family members and the mitochondria in apoptosis. Genes Dev. 1999; 13:1899-1911.
Guido k., John C. R., Mitochondrial control of cell death. Nat. Med. 2000; 6:513-519.
Vander Heiden M.G., Thompson C. B., Bcl-2 proteins: regulators of apoptosis or of mitochondrial homeostasis? Nature cell Biol. 1999; 1:E209-E217.
Herr I., Detatin K. M., Cellular stress response and apoptosis in cancer therapy. Blood 2001; 98:2603-2614.
Huang C. H., Treat J., New advances in lung cancer chemotherapy: topotecan and the role of topoisomerase I inhibitors. Oncology 2001; 61 suppl 1:14-24.
Huang Z., Bcl-2 family proteins as targets for anticancer drug design. Oncogene 2000; 19:6627-6631.
Jeyabalan M. P., Nalivaika E., Schiffer C. A., How does a symmetric dimmer recognize an asymmetric substrate? A substrate complex of HIV-1 protease. J. Mol. Biol. 2000; 301:1207-1220.
Joseph B., Lewensohb R., Zhivotovsky B., Role of apoptosis in the response of lung carcinomas to anti-cancer treatment. Ann. N. Y. Acad. Sci. 2001; 204-216.
Kaye F. J., Molecular biology of lung cancer. Lung Cancer 2001; 34:S35-S41.
Kerr J. F. R., Wyllie A. H., Currie A. R., Apoptosis: a basic biological phenomenon with wide ranging implications in tissue kinetics. Br. J. Cancer 1972; 26:1790-1794.
Khuri F. R., Herbst R. S., Fossella F. V., Emerging therapies in non-Small-cell lung cancer. Ann. Oncol. 2001; 12:739-744.
Kluck R. M., Bossy-Wetzel E., Green D. R., Newmeyer D. D., The release of cytochrome c from mitochondria: a primary site for Bcl-22 regulation of apoptosis. Science 1997; 275:1132-1136.
Korsmeyer S. J., Wei M. C., Saito M., Weiler S., Oh K. J., Schlesinger P. H., Pro-apoptotic cascade activates BID, which oligomerizes BAK or BAX into pores that result in the release of cytochrome C. Cell Death Differ. 2000; 7:1166-1173.
Korzeniewski C., Callewaert D. M., An enzyme-release assay for natural cytotoxicity. J. Immunol. Methods 1983; 64:313-320.
Krzakowski M., New agents within the preoperative chemotherapy of non-small cell lung cancer. Lung Cancer 2001; 34:S159-S163.
Kuo C. W., Chen Y. M., Chao J. I., Tsai C. M., Perng R. P., Non-small cell lung cancer in very yang and very old patients. Clin. Inves.2000; 117:354-357.
Lange-Carter C. A., Pleiman C. M., Gardner A. M., Blumer K. J., Johnson G. L., A divergence in the MAP kinase regulatory network defined by MEK kinase and Raf. Science 1993; 260:513-319.
Lee J. C., Kassis S., Kumar S., Badger A., Adams J. L., p38 Mitogen-activated protein kinase inhibitors-mechanisms and therapeutic potentials. Pharmacol. Ther. 1999; 82:389-397.
Levine A. J., p53, the cellular gatekeeper for growth and division. Cell 1997; 88:323-331.
Li H., Zhu H., Xu C. J., Yuan J., Cieavage od BID by caspase 8 mediates the mitochondrial damage in the Fas pathway of apoptosis. Cell 1998; 94:491-501.
Lin Z., Jian Y., Ben H. P., Kenneth W. K., Bert V., Role of BAX in the apoptotic response to anticancer agents. Science 2000; 290:989-992.
Liu X., Kim C. N., Yang J., Jemmerson R., Wang X., Induction of apoptotic program in cell-free extracts: requirement for dATP and cytochrome C. Cell 1996; 86:147-157.
Luo X., Budihardjo I., Zou H., Slaughter C., Wang X., Bid, a Bcl-2 interaction protein, mediates cytochrome C release from mitochondria in response to activation of cell surface death receptors. Cell 1998; 94:481-490.
Macfarlane D. E., Manzel L., Activation of beta-isozyme of protein kinase C (PKC beta) is necessary and sufficient for phorbol ester-induced differentiation of HL-60 promyelocyte. Studies with PKC beta-defective PET mutant. J. Biol. Chem. 1994; 269:4327-4331.
Marte B. M., Downward J., PKB/Akt: connecting phosphoinositide 3-kinase to cell survival and beyond. Trends Biochem. Sci. 1997; 22:355-358.
Manegold C., Chemotherapy for advanced non-small cell lung cancer: standards. Lung Cancer 2001; 34:S165-S170.
Minn A. J., Velez P., Schendel S. L., Liang H., Muchmore S. W., Fesik S. W., Fill M.,Thompson C. B., Bcl-xL forms an ion channel in synthetic lipid memberanes. Nature 1997; 385:3353-357.
Moser T. L., The Mechanism of Action of Angiostatin: Can You Teach an Old Dog New Tricks? Thromb. Haemost. 2002; 87:394—401.
Mosmann T., Rapid colorimetric assay for cell growth and survival: application to proliferation and cytotoxic assays. J. Immunol. Methods 1983; 65:55-63.
Muchmore S. W., Sattler M., Liang H., Meadows R. P., Harlan J. E., Yoon H. S., Nettesheim D., Chang B. S., Thompson C. B., Wong S. L., Ng S. L., Fesik S. W., X-ray and NMR structure of human Bcl-xL, an inhibitor of programmed cell death. Nature 1996; 381:335-341.
Nagata S., Apoptotic DNA fragmentation. Experi. Cell Res. 2000; 256: 12-18.
Niklinski J., Niklinska W., Laudanski J., Chyczewska E., Chyczewski L., Prognostic molecular markers in non-small cell lung cancer. Lung Cancer 2001; 34:S53-S58.
Oda E., Ohki R., Murasawa H., Nemoto J., Shibue T., Yamashita T., Tokino T., Taniguchi T., Tanaka N., Noxa, a BH3-only member of the Bcl-2 family and candidate mediator of p53-induced apoptosis. Science 2000; 288:1053-1058.
Oltvai Z. N., Korsmeyer S. J., Checkpoints of dueling dimmers foil death wishes. Cell 1994; 21:189-192.
Oltvai Z. N., Milliman C ., Korsmeyer S. J., Bcl-2 heteromerizes in vivo with a conserved homolog, Bax, that accelerales programmed cell death. Cell 1993; 74:609-619.
Parkin D. M., The global burden of cancer. Semin. Cancer Biol. 1998; 8:219-35.
Pongracz J., Webb P., Wang K., Deacon E., Lunn O. J., Lord J. M., Spontaneous neutrophil apoptosis involves caspase-3 mediated activation of protein kinase C-delta. J. Biol. Chem. 1999; 274:37329-
37334.
Prives C., Hall P. A., The P53 pathway. J. Pathol. 1999; 187:112-126.
Pujol J. L., Pawel J. V., Tumolo S., Martoni A., Hearn S., Fields S. Z., Ross G., Preliminary results of combined therapy with topotecan and carboplatin in advanced non-small-cell lung cancer. Oncology 2001; 61 suppl 1:47-54.
Reed J. C., Apoptosis-Based Therapies. Nature Rev. Drug Dis. 2002; 1:111-119.
Rind H. B., Whittemore S.R., Protein kinase C and camp-dependent protein kinase regulate the neuronal differentiation of immortalized raphe neurons. J. Neurosci. Res. 1999; 56:177-188.
Rosell R. and Felip E., Predicting response to paclitaxel /carboplatin -based therapy in non-small cell lung cancer. Semin. Oncol. 2001; 28 suppl 14:37-44.
Sattler M., Liang H., Nettesheim D., Meadows R. P., Harlan J. E., Eberstadt M., Yoon H. S., Shuker S. B., Chang B. S., Minn A. J., Thompson, C. B., Fesik, S. W., Structure of Bcl-xL-Bak peptide complex: recognition between regulators of apoptosis. Science 1997; 275:983-986.
Saraste A., Pulkki K., Morphologic and biochemical hallmarks of apoptosis. Cardi Res. 2000; 45:528-537.
Schiller J. H., Future role of topotecan in the treatment of lung cancer. Oncology 2001; 61 suppl 1:55-59.
Shimizu S., Narita M., Tsujimoto Y., Bcl-2 family proteins regulate the release of apoptogenic cytochrome c by the mitochondrial channel VDAC. Nature 1999; 399:483-487.
Steele R. J. C., Thompson A. M., Hall P. A., Lane D. P., The p53 tumour suppressor gene. Br. J. Sur. 1998; 85:1460-1467.
Stegh A. H., Herrmann H., Lampel S., Weisenberger D., Andra K., Seper M., Wiche G., Krammer P. H., Peter M. E., Identification of the cytolinker plectin as a major early in vivo substrate for caspase 8 during CD95- and tumor necrosis factor receptor-mediated apoptosis. Mol. Cell. Biol. 2000; 20:5665-5679.
Stein R. C., Waterfield G. S., PI3-kinase inhibition: a target for drug development? Mol. Med.Today 2000; 6:347-357.
Strasser A., O’connor L., Dixit V. M., Apoptosis signaling. Ann. Rev. Biochem. 2000; 69:214-245.
Stridh H., Kimland M., Jones D. P., Orrenious S., Hampton M. B., Cytochrome c release and caspase activation in hydrogen peroxide- and tributyltin-induced apoptosis. FEBS Lett. 1998; 429:351-355.
Su B., Karin M., Mitogen-activated protein kinase cascades and regulation of gene expression. Curr. Biol. 1996; 8:402-411.
Sun H., Lesche R., Li D. M., Liliental J., Zhang H., Gao J., Gavrilova N., Mueller B., Liu X., Wu H., PTEN modulates cell cycle progression and cell survival by regulating phosphatidylinositol 3,4,5,-trisphosphate and Akt/protein kinase B signaling pathway. Proc. Natl. Acad. Sci. USA 1999; 96:6199-6204.
Susin S. A., Lorenzo H. K., Zamzami N., Marzo I., Snow B. E., Brothers G. M., Mangion J., Jacotot E., Costantini P., Loeffler M., Larochette N., Goodlett D. R., Aebersold R., Siderovski D.P., Penninger J. M., Kroemer G., Molecular characterization of mitochondrial apoptosis-inducing factor. Nature 1999; 397:441-446.
Takahashi T., Kamimura A., Shirai A., Yokoo Y., Several selective protein kinase C inhibitors including procyanidins promote hair growth. Skin Pharmacol. Appl. Skin Physiol. 2000; 13:133-142.
Thatcher N., Chemotherapy for advanced non-small cell lung cancer. Lung Cancer 2001; 34:S170-S175.
Villa P., Kaufmann S. H., Earnshaw W. C., Caspases and caspase inhibitors. Trends Biochem. Sci. 1997; 22:388-393.
Wang S., Desai D., Wright G., Niles R. M., Wright G. L., Effects of protein kinase C alpha overexpression on A7r5 smooth muscle cell proliferation and differentiation. Exp. Cell Res. 1997; 236:117-126.
Widmann C., Gibson S., Jarpe B., Johnson G. L., Mitogen-activated protein kinase: conservation of a three-kinase module from yeast to human. Phys. Rev.1999; 79:143-180.
Wyllie A. H., Kerr J. F., Currie A. R., Cell death: the significance of apoptosis. Int. Rev. Cytol. 1980; 68:251-306.
Wyllie A. H., Morris R. G., Smith A. L., Dulop, D., Chromatin cleavage in apoptosis. J. Pathol. 1984; 142:67-77.
Wyllie A. H., Apoptosis: an overview. Br. Med. Bull 1997; 53:451-465.
Yamaguchi H., Wang H. G., The protein kinase PKB/Akt regulates cell survival and apoptosis by inhibiting Bax conformational change. Oncogene 2001; 20:7779 -7786.
Yao R., Cooper G. M., Requirement for phosphatidylinosotol-3 kinase in the prevention of apoptosis by nerve growth factor. Science 1995; 267:2003-2006.
Zhang H., Xu Q., Krajewski S., Krajewska M., Xie Z., Fuess S., Kitada S., Godzik A., Read J. C., BAR: an apoptosis regulator at the intersection of caspases and Bcl02 famil proteins. Proc. Natl. Acad. Sci. USA 2000; 97:2597-2692.
Zundel W., Giaccia A., Inhibition of the anti-apoptotic PI(3)K/Akt/Bad pathway by stress. Genes Dev., 1998; 12:1941-1946.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
1. 香茹抗氧化、抗癌活性成分及其抗癌機制之研究
2. 合成有潛力的抗癌化合物及利用人類穀氧還蛋白活化之抗癌化合物之前驅物
3. 吲哚與比咯苯偶氮駢共軛抗癌試劑 (Indole carboxylate-PBD hybrid)對A375黑色素細胞瘤之促細胞凋亡、抗癌細胞轉移與抗血管新生作用
4. 探討新穎雙功能烷化類抗癌藥3a-aza-cyclopenta[a]indenes衍生物之抗癌作用及機轉
5. 一、3',6-Substituted2-Phenyl-4-quinolone-3-carboxylicacid衍生物之合成及其抗癌、抗血小板、抗過敏與抗發炎活性二、生薑成分Gingerdione及Ferulamide衍生物之抗癌活性與抗幽門桿菌活性
6. 開發新穎抗癌藥物 DBPR104 之前驅藥物:設計、合成與藥物性質評估
7. І. 洋吊鐘萃取物的抗癌活性研究 ІІ. 探討台灣大戟根部萃取物誘導血癌細胞進行細胞凋亡的機制
8. 新型醣酯直誘發免疫抗癌機轉之研究
9. 紅光照射處理對於牛樟芝活性成分與抗癌活性之影響
10. 第一部份、芹菜腦之結構與抗癌活性關係研究, 第二部份、設計及合成以氧氮雙環為主體之潛在電子予體-受體光致變色物
11. 第一部份:以MALDI-TOF MS 建立檢測骨再吸收指標NTx 片斷之方法;第二部份:評估Grb2-SH2 的胜肽拮抗物及抗微生物的Ixosin-B 胜肽類緣物之抗癌活性
12. 舞菇深層培養最佳條件及抗老化與抗癌之功效探討
13. 天然物 Ugonstilbenes A、B 和 C 的合成及抗癌活性研究
14. 表沒食子兒茶素沒食子酸酯(EGCG)奈米金粒子結合物抗癌效果之研究:以小鼠B16-F10黑色素瘤細胞為例
15. 探討薑黃素結合臨床抗癌藥物在人類膀胱癌細胞中之效果及機轉
 
系統版面圖檔 系統版面圖檔