(3.239.192.241) 您好!臺灣時間:2021/03/02 12:14
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:蔡佩玲
研究生(外文):Peih-Ling Tsaih
論文名稱:肌電生物回饋對中風患者下肢動作功能之療效:降低回饋頻率之隨機控制實驗
論文名稱(外文):EMG Biofeedback on Lower Extremity Motor Function in Stroke Patients: Effects of Reduced Feedback Frequency in A Randomized Control Trial
指導教授:胡名霞胡名霞引用關係
指導教授(外文):Ming-Hsia Hu
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:物理治療學研究所
學門:醫藥衛生學門
學類:復健醫學學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:143
中文關鍵詞:肌電生物回饋回饋頻率動作學習機能障礙動作功能平衡肌電反應中風
外文關鍵詞:EMG biofeedbackfeedback frequencymotor learningimpairmentsfunctional abilitybalanceposturographystroke
相關次數:
  • 被引用被引用:7
  • 點閱點閱:695
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:73
  • 收藏至我的研究室書目清單書目收藏:1
回饋(feedback)是促進動作學習的最重要因素之一。過去文獻指出,對健康正常人來說,較低的回饋頻率似乎有較長效的學習效果。然而此原則是否適用於慢性中風患者卻不確知。因此本研究擬探討不同回饋頻率的肌電生物回饋儀訓練中風患者患側脛前肌肌力,對脛前肌肌力、踝關節主動背屈活動角度、小腿後肌痙攣、走路速度、計時起走測驗及平衡能力之立即和長期的療效。
本研究是單盲設計之隨機分組控制實驗。十八位單側單次偏癱之慢性中風患者被隨機分配於100%回饋組、50%消褪式回饋組和對照組。除對照組外,每位受試者均接受每週二天、每天訓練二十次肌肉用力、共持續六週的肌電生物回饋儀訓練患側脛前肌肌力。100%回饋組為每次肌肉用力都給回饋;50%消褪式回饋組為回饋頻率由100%漸減至5%,但維持總回饋頻率為50%。訓練組的受試者均接受訓練前三天內、完成第六週訓練後當日、完成訓練後二週和完成訓練後六週共四次評估。對照組的受試者則在相同時間間隔接受共四次評估。評估內容包括一、手握測力器(PowerTrack II, Jtech Medical Industries)測量之脛前肌肌力。二、關節量角器測量之踝關節主動背屈活動角度。三、埃許沃斯量表修改版測量之患側小腿後肌痙攣。四、碼表測量之走路速度。五、碼表測量之計時起走測驗。六、電腦動態平衡儀(Smart Balance Mater system, NeuroCom Int. Inc.)測量之平衡測量。
本研究結果顯示:第一、肌電生物回饋儀的訓練對慢性中風患者患側脛前肌肌力、兩側踝關節主動背屈活動角度、患側小腿後肌痙攣在訓練後有改善的趨勢。第二、較低肌電生物回饋頻率的肌電生物回饋儀訓練對慢性中風患者患側脛前肌肌力、兩側踝關節主動背屈活動角度在追蹤期(訓練後兩週)有明顯之影響的趨勢。第三、三組受試者的行走速度和計時起走測驗隨著時間有改善的趨勢。第四、三組受試者的感覺整合測試(p<0.001)、八方向持續重心轉移測驗中的足底壓力中心移動到達目標區之次數(p<0.025)和足底壓力中心到達前方目標區之花費時間(p<0.030)等平衡能力隨著時間變化而有明顯改善。第五、所有受試者在平衡干擾後肌電反應出現頻率為力板向上轉動大於力板向下轉動、健側大於患側。
本研究無法證實肌電生物回饋儀的訓練對慢性中風患者患側脛前肌肌力和兩側踝關節主動背屈活動角度在訓練後有明顯改善的效應。這可能是因為一、受試者人數不足。二、個案間變異大。三、治療時間及次數不夠等原因所致。然而由結果可觀察到較低肌電生物回饋頻率的訓練對慢性中風患者患側脛前肌肌力、兩側踝關節主動背屈活動角度在訓練後的追蹤期有改善較多的趨勢,而且向前後方向位移的幅度亦有明顯增加的趨勢。此現象表示較低回饋頻率的訓練對慢性中風患者的長效性動作學習並不比回饋頻率較高的訓練為差。因此回饋頻率的影響尚值得未來繼續研究。
Feedback is an important component of motor learning. Reduced relative feedback frequency has been shown to be more beneficial than 100% feedback frequency for long-term motor learning in the healthy subjects. Yet, the effect of reduced feedback frequency in stroke patients remains unclear.
The aim of the present study was to compare the differences between post-tests (immediate and follow-up) and baseline measurements among the control, 50% faded feedback frequency EMG biofeedback training group and 100% feedback frequency EMG biofeedback training group. The measurements are the strength of the bilateral TA muscles(PowerTrack II, Jtech Medical Industries), the active range of motion (ROM) of the ankle joints, the spasticity of the calf muscles, the walking speed, the time to complete the Timed Get-up and Go test, and standing balance (Smart Balance Master system, NeuroCom Int Inc).
This was a single-blind randomized-control trial study. Eighteen chronic stroke patients (7 females and 11 males, 66.3±12 y/o, time since onset 24.4±4.5 months) were randomly assigned to the control group, 50% fading feedback group and 100% feedback group. In feedback groups, subjects practiced 20 active affected ankle dorsi-flexion trials during each training session scheduled twice a week for six weeks. EMG biofeedback (Verimed Myoexorciser III system, Verimed Int Inc) was applied on the TA muscle of affected side. The amount of muscle contraction was shown on the biofeedback monitor in number and used as feedback for the subjects. Feedback was provided on each trial in the 100% group. In the 50% group, the feedback was faded from 100% to 5%, but the total number of feedback was 50%. Every subject was evaluated at pre-training, immediately post-training, follow-up period (two weeks after training and six weeks after training).
The results showed (1) A trend toward improvement in the strength of the TA muscle, the ROM of the ankle joints and the spasticity of the calf muscles in the training groups from baseline to post-tests; (2) A trend toward improvement of affected TA strength, ankle active ROM in the 50% fading feedback group at follow-up period; (3) A trend toward improvement of walking speed and the time to complete the get-up and go test in three groups from baseline to post-tests; (4) Significant improvement of equilibrium score (p<0.001) and times of successful arriving at targets in standing balance (p<0.025) in three groups from baseline to post-tests; (5) Lower response frequency of the postural muscles on affected side in response to toe-down rotational plateform perturbations.
Our study failed to show significant effects of the EMG biofeedback training program on TA muscle strength, ankle active ROM and spasticity of the calf muscles in chronic stroke patients. This was possibly due to the small sample size, large between-subject variation, and insufficient EMG biofeedback training. However, it was noted that 50% faded feedback group demonstrated more improvement of affected TA strength, ankle active ROM and anteroposterial weight shift range during follow-up tests. Thus, reduced feedback frequency training seems to have a motor learning effect. Further study could recruit more subjects who have little between-subject variation and then implement a longer training program.
致謝…………………………………………………………………………….1
表、錄………………………………………………………………………….5
中文摘要……………………………………………………………………….7
英文摘要………………………………………………………………………10
第一章、前言…………………………………………………………………13
第一節 、背景……………………………………………………………….13
第二節 、研究的重要性…………………………………………………….17
第三節 、名詞定義………………………………………………………….18
一、 回饋頻率………………………………………………………….....18
二、 肌力……………………………………………………………….....19
三、 關節主動活動角度……………………………………………….....19
四、 肌痙攣…………………………………………………………….....19
五、 行走速度………………………………………………………….....20
六、 平衡能力………………………………………………………….....20
第四節 、研究的目的……………………………………………………….21
第五節 、研究的問題和假說……………………………………………….21
第六節 、研究的限制……………………………………………………….22
第二章、文獻回顧……………………………………………………………24
第一節 、中風患者肌力與動作功能的關係……………………………….24
第二節 、中風患者的肌力訓練…………………………………………….26
第三節 、肌電生物回饋儀訓練在中風患者的效用……………………….27
第四節 、回饋與回饋頻率對動作學習的影響…………………………….30
第五節 、肌力、肌痙攣、計時起走測驗、電腦動態平衡儀的評估方法.34
一、 肌力……………………………………………………………….....34
二、 肌痙攣…………………………………………………………….....36
三、 計時起走測驗…………………………………………………….....39
四、 電腦動態平衡儀評估…………………………………………….....40
第三章、方法…………………………………………………………………44
第一節 、實驗設計………………………………………………………….44
第二節 、受試者…………………………………………………………….45
第三節 、訓練儀器及步驟………………………………………………….46
第四節 、評估項目與儀器………………………………………………….48
一、 兩側脛前肌最大肌力…………………………………………….....48
二、 兩側踝關節主動背屈活動角度………………………………….....49
三、 患側小腿後肌痙攣……………………………………………….....49
四、 行走速度………………………………………………………….....50
五、 計時起走測驗…………………………………………………….....50
六、 電腦平衡檢查…………………………………………………….....51
第五節 、評估工具的施測者內再測信度(intra-rater reliability ).51
第六節 、資料處理及統計分析…………………………………………….52
第四章、結果…………………………………………………………………54
一、 評估工具的施測者內再測信度……………………………………….54
二、 脛前肌肌力、踝關節主動背屈活動角度及患側小腿後肌痙攣…….55
三、 行走速度和計時起走測驗…………………………………………….57
四、 電腦平衡檢查………………………………………………………….58
第五章、討論…………………………………………………………………62
第一節 、評估工具的施測者內再測信度………………………………….63
第二節 、肌電生物回饋儀訓練對慢性中風患者機能損傷的效用……….64
第三節 、肌電生物回饋頻率對慢性中風患者機能損傷的效用………….65
第四節 、肌電生物回饋儀訓練對慢性中風患者動作功能改善的效果….67
第五節 、中風患者平衡干擾後的肌電反應……………………………….68
第六節 、研究方法的檢討………………………………………………….69
第六章、結論…………………………………………………………………73
參考文獻………………………………………………………………………74
附錄1、國立臺灣大學醫學院暨附設醫院臨床試驗受試者說明及同意書134
附錄2、中風患者基本資料表………………………………………………138
附錄3、評估紀錄表…………………………………………………………139
附錄4、訓練紀錄單…………………………………………………………141
附錄5、施測者再測信度紀錄表……………………………………………143
表、圖目錄
表1. 埃許瓦斯量表修改版…………………………………………………86
表2. 神經系統損傷患者適用之徒手肌力測試分級………………………87
表3. Motoricity Index……………………………………………………88
表4. 原版之埃許瓦斯量表…………………………………………………89
表5. 受試者之基本資料……………………………………………………90
表6. 各項評估工具的施測者再測信度……………………………………91
表7. 三組在訓練前、後脛前肌肌力、踝關節主動背屈活動角度和小腿後
肌痙攣之敘述性統計資料……………………………………......92
表8. 檢驗脛前肌肌力、踝關節主動背屈活動角度和小腿後肌痙攣在訓練
前、後三組差異之統計結果……………………………………....93
表9. 行走速度和計時起走測驗在訓練前、後三組的敘述性資料………94
表10. 檢驗行走速度和計時起走測驗在訓練前、後三組差異之統計結果95
表11. 三組在訓練前、後感覺整合測驗中平衡指數之敘述性統計資料…96
表12. 檢驗感覺整合測驗中平衡指數在訓練前、後
三組差異之統計結果…………………………………………………97
表13. 三組在訓練前、後八方向持續重心轉移測驗中八秒內到達目標區次
數之敘述性統計資料…………………………..................98
表14. 檢驗八方向持續重心轉移測驗中八秒內到達目標區次數在訓練前、
後三組差異之統計結果………………………………............99
表15. 三組在訓練前、後八方向持續重心轉移測驗中到達目標區花費時間
之敘述性統計資料…………………………...................100
表16. 八方向持續重心轉移測驗中到達目標區花費時間在訓練前、後三組
差異之統計結果…………………………………….............102
表17. 三組在訓練前、後八方向持續重心轉移測驗中足底壓力中心移動軌
跡長度之敘述性統計資料…………………...................104
表18. 八方向持續重心轉移測驗中足底壓力中心移動軌跡長度在訓練前、
後三組差異之統計結果…………………………………….......106
表19. 三組受平衡干擾後肌電反應的出現頻率………………………….108
表20. 三組訓練前、後長潛伏期變化之平均值與標準差……………….109
表21. 長潛伏期在訓練前、後三組差異之統計結果…………………….110
圖1. Nagi的失能模式…………………………………………………….111
圖2. 正常與痙攣之肱二頭肌受不同速度之單次牽拉後的肌電反應示意圖……………………………………………….......................112
圖3. 50%消褪式回饋組肌電回饋給予分配圖……………………………113
圖4. 本研究所使用的肌電生物回饋儀………………………………….114
圖5. 訓練時肌電生物回饋儀電極位置圖……………………………….115
圖6. 踝關節抵抗一公斤阻力做背屈動作……………………………….116
圖7. 踝關節盡全力做背屈動作………………………………………….117
圖8. 三組訓練前、後患側脛前肌肌力變化圖………………………….118
圖9. 三組訓練前、後患側踝關節主動背屈角度變化圖……………….119
圖10. 三組訓練前、後健側踝關節主動背屈角度變化圖……………….120
圖11. 三組訓練前、後小腿後肌痙攣變化圖…………………………….121
圖12. 三組訓練前、後行走速度變化圖………………………………….122
圖13. 三組訓練前、後計時起走測驗耗費時間變化圖………………….123
圖14. 三組訓練前、後感覺整合測驗變化圖…………………………….124
圖15. 三組動態平衡測驗中成功到達目標區的次數…………………….125
圖16. 三組訓練前、後足底壓力中心到達目標區之花費時間雷達圖….126
圖17. 三組訓練前、後足底壓力中心移動軌跡長度之雷達圖………….127
圖18. 平衡受到力板向上及向下轉動時的肌電反應圖………………….128
圖19. 力板向上轉動平衡干擾時三組受試者兩側三種潛伏期的肌電反應出
現頻率變化圖…………………………………………….........129
圖20. 力板向上、向下轉動時兩側肌電反應之長潛伏期變化………….130
圖21. 所有受試者在訓練前與訓練後兩週患側脛前肌肌力
變化圖……………………………………………………………….131
圖22. 所有受試者在訓練前與訓練後兩週患側踝關節主動背屈活動角度
變化圖……………………………………………………………….132
Agre JC, Magness JL, Hull SZ, Wright KC, Baxter TL, Patterson R, et al. Strength testing with a portable dynamometer: reliability for upper and lower extremities. Arch Phys Med Rehabil 1987; 68:454-8.
Andrews AW, Bohannon RW. Distribution of muscle strength impairments following stroke. Clin Rehabil 2000;14:79-87.
Armstrong L. et al. Using isokinetic dynamometry to test ambulatory patients with multiple sclerosis. Phys Ther 1983;63:1274.
Ashworth B: Preliminary trial of carisoprodal in multiple sclerosis. Practitioner 192:540-542, 1964.
Baker M, Regenos E, Wolf SL, Basmajian JV. Developing strategies for biofeedback: Applications in neurologically handicapped patients. Phy Ther 1977;57(4): 402-408.
Basmajian JV, Kukulka CG, Narayan MG, Takebe K. Biofeedback treatment of foot-drop after stroke compared with standard rehabilitation technique: Effects on voluntary control and strength. Arch Phys Med Rehabil 1975;56:231-236.
Basmajian JV. Biofeedback in rehabilitation: A review of principles and practices. Arch Phys Med Rehabil 1981;62:469-475.
Bilodeau EA, Bilodeau IM, Schumsky DA. Some effects of introducing and withdrawing knowledge of results early and late in practice. Journal of Experimental Psychology 1959;58:142-144.
Binder S, Moll CB, Wolf SL. Evaluation of electromyographic biofeedback as an adjunct to therapeutic exercise in treating the lower extremities of hemiplegic patients. Phys Ther 1981;61:886-893.
Bobath B. Adult hemiplegia: Evaluation and treatment. 2nd ed. London: Heinemann; 1978.
Bogousslavaky J. The Lausanne stroke registry: Analysis of 1000 consecutive stroke patients. Stroke 1988;19:1083.
Bohannon R, Walsh S. Nature, reliability, and predictive value of muscle performance measures in patients with hemiparesis following stroke. Arch Phys Med Rehabil 1992;73:721-725.
Bohannon R. Recovery and correlates of trunk muscle strength after stroke. Int J Rehabil Res 1995;18:162-167.
Bohannon RW, Andrews AW. Interrater reliability of hand-held dynamometry. Phys Ther 1987;67(6):931-933.
Bohannon RW, Smith MB. Interrater reliability of a modified Ashworth Scale of muscle spasticity. Phys Ther 1987;67(2):206-207.
Bohannon RW. Is the measurement of muscle strength appropriate in patients with brain lesions? Phys Ther 1989;69:225.
Bohannon RW. Test-retest reliability of hand-held dynamometry during a single session of strength assessment. Phys Ther 1986;66(2):206-209.
Bourbonnais D, Vanden Noven S. Weakness in patients with hemiparesis. Am J Occup Ther 1989;43:313.
Bradley L, Hart BB, Mandana S, Flower K, Riches M, Sanderson P. Electromyographic biofeedback for gait training after stroke. Clinical Rehabilitation 1998;12:11-22.
Burnside IG, Tobias HS, Bursell D. Electromyographic feedback in the remobilization of stroke patients: a controlled trial. Arch Phys Med Rehabil 1982; 63:217-222.
Carr JH, Shepherd RB. Motor relearning program for stroke. Rockville, MD: Aspen, 1986.
Clark S, Rose DJ, Fujimoto K. Generalizability of the limits of stability test in the evaluation of dynamic balance among older adults. Arch Phys Med Rehabil 1997;78:1078-1084
Davies PM. Steps to follow. New York: Springer-Verlag; 1985.
Demeunisse A, Demol O, Robaye E. Motor evaluation in vascular hemiplegia. Eur Neurol 1980;19:382-389.
Di Fabio RP, Badke MB. Relationship of sensory organization to balance function in patients with hemiplegia. Physical Therapy 1990;70:542-48
Dichgans J, Diener HC. The use of short- and long-latency reflex testing in leg muscles of neurological patients, In: Struppler A, Weindle A, eds. Clinical aspects of sensory-motor integration: Implications for neurological patients. New York: Springer-Verlag. 1987;165-175.
Doebelin EO. Measurement systems: application and design. 4th ed. New York: McGraw-Hill Publishing Co; 1990.
Fleiss JL. The Design and Analysis of Clinical Experiments. New York: John Wiley & Sons; 1986.
Ford-Smith CD, Wyman JF, Elswick RK, Fernandez T, Newton RA. Test-retest reliability of the sensory organization test in noninstitutionalized older adults. Arch Phys Med Rehabil 1995;76:77-81
Freund HJ: The pathophysiology of central paresis. In Struppler A, Weindl A (eds): Electromuography and Evoked Potentials. New York, NY, Springer-Verlag New York Inc, 1985, pp 19-21.
Gentil AM. A working model of skill acquisition with application to teaching. Quest 1971;17:3-23.
Giallonardo LM. Gait. In: Myers RS, editor. Saunders manual of physical therapy practice. Philadelphia: W.B. Saunders Co.; 1995. P. 1110.
Glanz M, Klawansky S, Stason W, Berkey C, Ahah N, Phan H, Chalmers C. Biofeedback therapy in post-stroke rehabilitation: A meta-analysis of the randomised controlled trials. Arch Phys Med Rehabil 1995; 76:508-515.
Gordon J. Assumptions underlying physical therapy intervention: theoretical and historical perspectives. In: Carr JH, Shepherd RB, Gordon J, editors. Movement sciences: fundations for physical therapy in rehabilitation. Rovkville: Aspen; 1987. p. 1-30.
Gowland C, deBruin H, Basmajian JV, et al. Agonist and antagonist activity during voluntary upper-limb movement in patients with stroke. Phys Ther. 1992;72:624-633.
Gregson JM, Leathley M, Moore AP, Sharma AK, Smith TL, Watkins CL. Reliability of the Tone Assessment Scale and modified Ashworth scale as clinical tools for assessing poststroke spasticity. Arch Phys Med Rehabil 1999;80:1013-1016.
Hislop H, Montgomery J. Muscle testing: Techniques of manual examination. 6th ed. Saunders: Philadelphia; 1995.
Horak FB, Henry SM, Shumway-Cook A. Postural perturbations: new insights for treatment of balance disorders. Phys Ther. 1997;77:517-533.
Hu MH, Hung YC, Huang YL, et al. Validity of force platform measures for stance stability under varying sensory conditions. Proceedings of the National Science Council, ROC Part B: Life Sciences 1996;20(3):78-86.
Hurd WW, Pegram V, Nepomuceno C. Comparison of actual and stimulated EMG biofeedback in the treatment of hemiplegic patients. Am J Phys Med 1980;59(2):73-82.
Hwang AW. Reliability and validity of Nicholas hand-held dynamometer of musce strength measurement in non-disabled children and children with cerebral palsy, Taipei, National Taiwan University; 1999 (master thesis).
John HJ. Selected writings of John Hughlings Jackson. In: Taylor J, editor. Basic books. New York. 1958.
Katz RT, Rymer WZ. Spastic hypertonia: Mechanisms and Measurement. Arch Phys Med Rehabil 1989;70:144-155.
Kelly JL, Baker MP, Wolf AL. Procedures for EMG biofeedback training in involved upper extremities of hemiplegic patients. Physical Therapy. 1979;59(12):1500-1507.
Kendall FP, McCreary EL. Muscle Testing and Function. 3rd ed. Baltimore: Williams & Wilkins. 1983.
Knutsson E, Richards C. Different types of disturbed motor control in gait of hemiparetic patients. Brain 1979;102:405-430.
Lance JW, McLeod JG: Disordered muscle tone. In Physiological Approach to Clinical Neurology. Boston, Butterworths, 1981.
Lance JW: Symposium synopsis. In Feldman RG, Young RR, Koella WP (eds): Spasticity: Disordered Motor Control. Chicago, Year Book Publishers, 1980, pp 485-494.
Lawson GD, Sphepard NT, Oviatt DL, et al. Electromyographic responses of lower leg muscles to upward toe tilts as a function of age. J Vest Res. 1994;4(3):203-214.
Lee TD, White MA, 1993han H. On the role of knowledge of results in motor learning: Exploring the guidance hypothesis. Journal of Motor Behavior 1990;22:191-208.
Lehmkuhl LD, Smith LK. Brunnstrom’s clinical kinesiology. 4th ed. 台北:大學圖書出版社;1986年。
Lincoln NB, Sackley CM. Biofeedback in stroke rehabilitation. Crit Rev Phys Rehabil Med 1992;4:37-47.
Liston RAL, Brouwer BJ. Reliability and validity of measurements obtained from stroke patients using the balance master. Arch Phys Med Rehabil 1996;77:425-430.
Lynch KB, Bridle MJ. Validity of the Jebsen-Taylor hand function test in predicting activities of daily living. Occup Ther J Res 1989;5:316-318.
Marinacci AA, Horande M. Electromyogram in neuromuscular re-education. Bull. Los Angeles Neurol. Soc., 1960;25:57-71.
Mathias S, Nayak USL, Isaacs B. Balance in the elderly patient: The ‘Get-up and Go’ test. Arch Phys Med Rehabil 1986;67:387.
Moreland JD, Thomson MA, Fuoco AR. Electromyographic biofeedback to improve lower extremity function after stroke: A meta-analysis. Arch Phys Med Rehabil 1998;79:134-140.
Moreland JD, Thomson MA.Efficacy of electromyographic biofeedback compared with conventional physical therapybfor upper extremity function in patients following stroke: a research overview and meta-analysis. Phys Ther 1994;74:534-47.
Mulder T, Hulstyn W. Sensory feedback therapy and theoretical knowledge of motor control and learning. Am J Phys Med 1984;63(5):226-244.
Nadeau S, Arsenault AB, Gravel D, Bourbonnais D: Analysis of the clinical factors determining natural and maximal gait speeds in adults with a stroke. Am J Phys Med Rehabil 1999;78:123-130.
Nagi SZ. Some conceptual issues in disability and rehabilitation. In: Sussman MD, editor. Sociology and rehabilitation. Washington: American Sociological Association; 1965. P. 100-113.
Nashner LM, Cordo PJ. Relation of automatic postural responses and reaction-time voluntary movements of human leg muscles. Exp Brain Res. 1981;43:395-405.
Nashner LM, McCollum G. The organization of human postural movements: a formal basis and experimental synthesis. Behav Brain Sci. 1985;8:135-172.
Nashner LM, Shumway-Cook A, Marin O. Stance postural control in select groups of children with cerebral palsy: deficits in sensory organization and muscular coordination. Exp Brain Res. 1983;49:393-409.
Nashner LM. Computerized dynamic posturography. In: Jacobson GP, Newman CW, Kartush JM eds. Handbook of Balance Function Testing. Baltimore: Mosby Year Book, 1993:280-307.
NeuroCom International, Inc. SMART Balance Master Operator’s Manual. Clackamas, Oregon, USA ,1993
O’sullivan SB. Assessment of motor function. In: O’sullivan SB, Schmitz TJ, editors. Physical rehabilitation: assessment and treatment. 4th ed. Philadelphia: F.A. Davis Company; 2001Podsiadlo D, Richardson S. The Timed “Up & Go”: A test of basic functional mobility for frail elderly persons. J Am Geriatr Soc 1991;39:142-148.
Olney SJ, Griffin MP, Mcbride IA: Temporal, kinematic, and kinetic variables related to gait speed in subjects with hemiplegia: a regression approach. Phys Ther 1994;74:872-885.
Olney SJ, Griffin MP, Monga TN, Mcbride ID: Work and power in gait of stroke patients. Arch Phys Med Rehabil 1991;72:309-314.
Podsiadlo D, Richardson S. The timed “up & go”: A test of basic functional mobility for frail elderly persons. J Am Geriatr Soc 1991;39:142-148.
Roebroeck ME, Harlaar J, Lankhorst GJ. Reliability assessment of isometric knee extension measurements with a computer-assissted hand-held dynamometer. Arch Phys Med Rehabil 1989;79:442-8.
Salmoni AW, Schmidt RA, Walter CB. Knowledge of results and motor learning: A review and critical reappraisal. Psychological Bulletin 1984;95:355-386.
Schleenbaker RE, Mainous AG. Electromyographic biofeedback for neuromuscular re-education in the hemiplegic stroke patient: a meta-analysis. Arch Phys Med Rehabil 1993; 74: 1301-1304.
Schmidt RA, Lee TD. Motor control and learning: A behavioral emphasis. 3rd ed. Champaign, Illinois: Human Kinetics publishers, 1999:285-355.
Shumway-Cook A, Woollacott MH. Constraints on motor control. In: Shumway-Cook A, Woollacott MH. Motor Control: Theory and practical applications. 2nd ed. Baltimore: Lippincott Williams & Wilkins; 2001. p. 127-162.
Shumway-Cook A, Woollacott MH. Motor Control: Theory and practical applications. Baltimore: Lippincott Williams & Wilkins; 1995.
Sparrow WA, Summers JJ. Performance on trials without knowledge of results (KR) in reduced relative frequency presentations of KR. Journal of Motor Behavior 1992;24:197-209.
Teixeira-Salmela LF, Olney SJ, Nadeau S, Brouwer B. Muscle strengthening and physical conditioning to reduce impairment and disability in chronic stroke survivors. Arch Phys Med Rehabil 1999;80:1211-1218.
Thilmann AF, Fellows SJ, Garms E. The mechanism of spastic muscle hypertonus. Brain 1991;114:233-244.
Vander Linden DW, Cauraugh JH, Green TA. The effect of frequency of kinetic feedback on learning an isometric force production task in nondisabled subjects. Phys Ther 1993;73(2):79-87.
Voorhees RL. Dynamic posturography findings in central nervous system disorders. Otolaryngology- Head and Neck Surgery 1990;103:96-101
Weeks DJ, Zelaznik H, Beyak B. An empirical note on reduced frequency of knowledge of results. Journal of Human Movement Studies 1993;25:193-201.
Weiss A, Suzuki T, Bean J, Fielding RA. High intensity strength training improves strength and functional performance one year stroke. Am J Phys Med Rehabil 2000;79:369-376.
Winstein CJ, Schmidt RA. Reduced frequency of knowledge of results enhances motor skill learning. Journal of Experimental Psychology: Learning, Memory and Cognition 1990;16:677-691.
Wolf SL, Binder-Macleod SA. Electromyographic biofeedback applications to the hemiplegic patint: Changes in upper extremity neuromuscular and functinal status. Phys Ther 1983;63:1393-1403.
Wolf SL. Electromyographic biofeedback applications to stroke patients: a critical review. Phys Ther 1983;63(9):1448- 1459.
Wulf G, Lee TD, Schmidt RA. Reducing knowledge of results about relative and absolute timing: Differential effects on learning. Journal of Motor Behavior 1994;26:362-369.
林千禾、胡名霞、鄭世忠、曹昭懿。手握測力器量測下肢肌力之效度與信度研究。物理治療2000;25(4):232-238。
潘冠碩、莊麗玲、胡名霞。家族遺傳性顫抖與陷窩梗塞伴隨老年失智之病例報告。中華物療誌 1999;24(3):206-219。
蔡佩玲、胡名霞。中風患者肌痙攣、肌無力與動作功能之現代觀念。物理治療 2001;26(5):255-262。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔