(3.235.11.178) 您好!臺灣時間:2021/02/26 02:42
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:蔡春祥
研究生(外文):Chun-Hsiang Tsai
論文名稱:短生命週期產品的存貨管理
論文名稱(外文):Inventory Management for Product with Short Product Life-cycle
指導教授:周碩彥周碩彥引用關係
指導教授(外文):Shuo-Yan Chou
學位類別:碩士
校院名稱:國立臺灣科技大學
系所名稱:工業管理系
學門:商業及管理學門
學類:其他商業及管理學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:英文
論文頁數:39
中文關鍵詞:短生命週期邏吉斯方程式邏吉斯模型退化動態規劃模型現值先缺貨後存貨
外文關鍵詞:short product life-cyclelogistic growth equationlogistic modeldeteriorationdynamic programming modelpresent worthshortages followed by inventory
相關次數:
  • 被引用被引用:3
  • 點閱點閱:349
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
最近幾年,由於技術的快速演進,愈來愈多的新產品導入市場。此類產品的生命週期短於耐用產品,因此存貨的有效率管理就顯得更為重要。傳統的存貨規畫技術乃針對長生命期週期的產品,不適於短生命期週期的產品。由於模仿的效應,許多的購買者互相影響,因為動態性需求可塑模成羅吉斯代替模型而非常態分配。在此篇研究中,兩個存貨補貨問題是以邏吉斯需求模型為基礎,並建立與解以幫助短生命週期產品管理。
首先,存貨模型是以邏吉斯需求模型為基硬,其考慮的因素:允許缺貨的存貨模、SFI補貨策略及錢的時間價值與通貨膨脹。使用擴充的Wangner─Whitin方法決定補貨循環、排程及批量大小。利用敏感性分析比較允許缺貨與不允許缺貨。
第二,更進一步的探討,上面的問題再考慮到指數分配退化,然後決定補貨循環、排程及批量大小。使用擴允的Wangner─Whitin方法和利用模擬退火演算法尋找最佳補貨點。使用一個例子解說解法的程序。
In recent years, due to the rapid advancement of technologies, more and more innovative products are introduced to the markets. As the life-cycles of such products are shorter than those of the durable goods, the effective management of their inventory is therefore critical to their competitiveness. Traditional inventory planning techniques for products with long product life-cycles are generally not suitable for dealing with products with short product life-cycles. In consequence of the imitation effect, the number of buyers is influenced by each other and the dynamic of the demand can thus be modeled with the logistic substitution model rather than normal distribution. In this research, two inventory replenishment problems based on the logistic demand model are formulated and solved to facilitate the management of products with short product life cycles.
Firstly, an inventory model allowing shortages and shortages followed by inventory replenishment policy is established for the logistic substitution model with consideration of both time-value of money and inflation. An extended Wangner─Whitin approach is used to determine the replenishment cycle, schedules and lot-sizes. A sensitivity analysis is performed to compare the policies with and without shortages.
Secondly, for further exploration, the above problem with exponentially distributed deterioration is considered for determining the replenishment cycle, schedules and lot-sizes. An approach extending the original Wangner─Whitin approach and utilizing a simulated annealing algorithm is proposed for finding the optimal replenishment point for an inventory system. A numerical example is presented to illustrate the procedure of the solution approach.
ABSTRACT I
ACKNOWLEDGEMENTS II
TABLE OF CONTENTS III
LIST OF TABLES V
CHAPTER 1 INTRODUCTION 1
1.1 BACKGROUND 1
1.2 LITERATURE REVIEW 2
1.2.1 Time-varying Demand 2
1.2.2 Effects of Inflation and the Time Value of Money 2
1.2.3 Replenishment Policy for Deteriorating Items 4
1.2.4 Inventory Policies Allowing Shortages 4
1.2.5 Simulated Annealing 5
1.3 ORGANIZATION OF THE THESIS 6
CHAPTER 2 LOGISTIC MODEL AND SHORT PRODUCT LIFE-CYCLE 8
2.1 PRODUCT WITH SHORT PRODUCT LIFE-CYCLE 8
2.2 LOGISTIC GROWTH CURVE 8
2.3 LOGISTIC DEMAND MODEL 10
2.4 LOGISTIC SUBSTITUTION MODEL 13
2.5 APPLICATIONS 14
CHAPTER 3 AN INVENTORY MODEL FOR NON-DETERIORATING ITEMS 16
3.1 INTRODUCTION 16
3.2 ASSUMPTIONS AND NOTATIONS 16
3.3 MATHEMATICAL MODEL 18
3.4 SOLUTION PROCEDURE 20
3.5 NUMERICAL EXAMPLE 21
3.6 SENSITIVITY ANALYSIS 22
CHAPTER 4 AN INVENTORY MODEL FOR DETERIORATING ITEMS 28
4.1 INTRODUCTION 28
4.2 ASSUMPTIONS AND NOTATIONS 28
4.3 MATHEMATICAL MODEL 29
4.4 SOLUTION PROCEDURE 31
4.5 NUMERICAL EXAMPLE 35
CHAPTER 5 CONCLUSION 36
REFERENCE 37
[1]Bahari-Kashani, H., “Replenishment schedule for deteriorating items with time─proportional demand,” Journal of the Operational Research Society, 40(1), pp. 75─81, 1989.
[2]Bierman, H. Jr. and Thomas, J., “Inventory decisions under inflationary conditions,” Decision Sciences, 8(1), pp. 151─156, 1977.
[3]Buzacott, J. A., “Economic order quantities with inflation,” Operational Research Quarterly, 26(3), pp. 553─558, 1975.
[4]Baxter, M., Product Design: Practical Methods for the Systematic Development of New Products, Chapman & Hall, London, 1995.
[5]Covert, R. B. and Philip, G. C., “An EOQ model with Weibull distribution deterioration,” AIIE Transactions, 5(4), pp. 323─326, 1973.
[6]Chen, J. M., “An inventory model for deteriorating items with time─proportional demand and shortages under inflation and time discounting,” International Journal of Production Economics, 55(1), pp. 21─30, 1998.
[7]Chung, K. J. and Ting, P. S., “On replenishment schedule for deteriorating items with time─proportional demand,” Production Planning & Control, 5(4), pp. 392─396, 1994.
[8]Datta, T. K. and Pal, A. K., “Effects of inflation and time value of money on an inventory model with linear time─dependent demand rate and shortages,” European Journal of Operational Research, 52(3), pp. 326─333, 1991.
[9]Dave, U. and Patel, L. K., “(T,Si) policy inventory model for deteriorating items with time proportional demand,” Journal of the Operational Research Society, 32(1), pp. 137─142, 1981.
[10]Deb, M. and Chaudhuri, K., “An note on the heuristic for replenishment of trended inventories considering shortages,” Journal of the Operational Research Society, 38, pp. 459─463, 1987.
[11]Donaldson, W. A. “Inventory replacement policy for a linear trend in demand — an analytical solution,” Operational Research Quarterly, 28(3), pp. 663─670, 1977.
[12]Ghare, P. M. and Schrader, G. F., “A model for exponentially decaying inventory,” Journal of Industrial Engineering, 14(5), pp. 238─243, 1963.
[13]Goyal, S. K., Morin, D. and Nebebe, F., “The finite horizon trended inventory replenishment problem with shortages,” Journal of the Operational Research Society, 43(12), pp. 1173─1178, 1992.
[14]Hadley, G., “A comparison of order quantities computed using the average annual cost and the discounted cost,” Management Science, 10(3), pp. 472─476, 1964.
[15]Johnson, D. S., Aragon, C. R., McGeoch, L. A. and Schevon, C., “Optimization by simulated annealing: An experimental evaluation: Part 1, Graph partitioning,” Operations Research, 37(6), pp. 865─892, 1989.
[16]Lapide, L., “New developments in business forecasting,” The Journal of Business Forecasting Method & Systems, 20, pp. 18─20, 2001.
[17]Linton, J., “The product life cycle: What hula hoops and circuit assemblies have in common,” Circuits Assembly, San Francisco, 10(9), pp. 22─24, 1999.
[18]Meyer, P. S., Yun, J. W. and Ausubel, J. H, “A primer on logistic growth and substitution: the mathematics of the Loglet Lab software,” Technological Forecasting and Social Change, 61(3), pp. 247─271, 1999.
[19]Misra, R. B., “A note on optimal inventory management under inflation,” Navel Research Logistics Quarterly, 26(1), pp. 161─165, 1979.
[20]Moore, W. L. and Pessemier, E. A., Product planning and Management: Designing and Delivering Value, McGraw─Hill, New York, 1993.
[21]Ostrosky, A. L., and Koch, J. V., Introduction to Mathematical Economics, Houghton Mifflin, Boston, 1979.
[22]Philip, G. C., “A generalized EOQ model for items with Weibull distribution,” AIIE Transactions, 6(2), pp. 159─162, 1974.
[23]Raafat, F., “Survey of literature on continuously deteriorating inventory models,” Journal of the Operational Research Society, 42(1), pp. 27─37, 1991.
[24]Rogers, E. M., Diffusion of Innovations, 3rd Edition, The Free Press, New York, 1983.
[25]Sachan, R. S., “On (T,Si) policy inventory model for deteriorating items with time proportional demand,” Journal of the Operational Research Society, 35(11), pp. 1013─1019, 1984.
[26]Thomas, J., “Down but not out,” Distribution, pp. 6─12, 1995.
[27]Trippi, R. R., and Lewin, D. E., “A present value formulation of the classic EOQ problem,” Decision Science, 5(1), pp. 30─35, 1974.
[28]Van Laarhoven, P. J. M., and Aarts, E. H. L., Simulated Annealing: Theory and Applications, Kluwer Academic Publishers, London, 1987.
[29]Wanger, H. M., and Whitin, T. M., “Dynamic version of the economic lot size model,” Management Science, 5(1), pp. 89─96, 1958.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 邱振淼。1996。「圖們江經濟自由區的開發」,共黨問題研究,第22卷第10期,頁20-28。
2. 吳玲君。2000。「東協國家APEC政策的政經因素」,問題與研究,第39卷第3期,頁39-54。
3. 金榮勇。1994。「泰國川立沛政府的經貿外交」,問題與研究,第33卷第2期,頁16-24。
4. 金榮勇。1993。「一九九0年代日本的亞太政策」。問題與研究,第32卷第6期,頁36-39。
5. 林德昌。1996。「中國大陸邊境貿易的發展」,中國大陸研究,第39卷第5期,頁23-37。
6. 吳安家。1994。「後冷戰時期中共對臺灣之政策」,國際關係學報,第9期,頁169-182。
7. 邱振淼。1997。「中共積極介入大湄公河開發案研析」,中共研究,第31卷第6期,頁95-101。
8. 王文杰。1996。「中華人民共和國外商投資企業法的發展新動態」,月旦法學雜誌,第14期,頁76-80。
9. 王文杰。2000。「大陸外商投資企業法律體系之變遷與進入WTO後之調整」,全國律師,9月號,頁40-50。
10. 侯山林。1999。「通貨緊縮與中國大陸宏觀政策選擇」,臺灣經濟研究月刊,第22卷第12期,頁87-94。
11. 金榮勇。2000。「亞洲金融風暴與東亞經濟安全體系之建立」,問題與研究,第39卷第1期,頁1-13。
12. 吳安家。1993。「中共十四大後的政治動向」,中國大陸研究,第35卷第12期,頁5-16。
13. 王文杰。1998。「大陸外商投資企業法律體系與發展動態」,臺灣經濟金融月刊,第34卷第10期,頁57-66。
14. 宗侯。1998。「對中共與美國現存經貿問題之探討」,中共研究,第32卷第8期,頁36-47。
15. 余少華。1991。「南沙群島之戰略地位」,國防雜誌,第6卷第8期,頁41-48。
 
系統版面圖檔 系統版面圖檔