(3.238.186.43) 您好!臺灣時間:2021/03/01 08:52
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:陳俊賢
論文名稱:錳取代鋰鈷鎳氧化物鋰電池陰極材料之研究
論文名稱(外文):Investigations of Mn-Substituted Li-Ni-Co Oxide Cathode Materials in Lithium Batteries
指導教授:黃炳照黃炳照引用關係
學位類別:碩士
校院名稱:國立臺灣科技大學
系所名稱:化學工程系
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:144
中文關鍵詞:鋰離子電池陰極材料鋰鈷鎳氧化物鋰鈷鎳錳氧化物
外文關鍵詞:Li-ion batteriesCathode materialsLixNi1-yCoyO2LixNi1-y-zCoyMnzO2
相關次數:
  • 被引用被引用:3
  • 點閱點閱:467
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
摘 要
本論文之研究目的在以溶膠凝膠法合成粒徑分布均一之奈米陰極材料,並以Mn金屬元素部分取代LiNi0.75Co0.25O2中Ni之位置,開發高能量密度、高穩定性及低成本之LiNi0.75-zCo0.25MnzO2陰極材料,並且進行不同元素計量比材料之合成及其材料特性之鑑定。
首先對LiNi0.75Co0.25O2前驅物以不同煆燒溫度及不同煆燒時間合成LiNi0.75Co0.25O2粉末,經由XRD繞射分析得知以煆燒溫度800℃,煆燒時間12小時可得最佳純相之六方晶體結構,SEM分析可得到一粉徑約為0.8μm且粒徑分佈均勻之顆粒,得知此為一最佳之合成條件。LiNi0.75Co0.25O2製備成陰極極片後,組裝成鈕扣型電池於0.1C充放電速率,充放電截止電壓為4.3及3V範圍內,進行充放電測試,起始放電電容量為190mAh/g,經20次循環測試後放電電容量為178mAh/g,衰退速率為6.32%。
在以最佳條件合成不同鈷計量比之LiNi1-yCoyO2材料,由XRD繞射分析出皆能合成出純相產物,材料粒徑隨著鈷計量比增加而減小,粒徑分佈也愈窄。各不同計量之LiNi1-yCoyO2材料於充放電測試中得到,當鈷計量數為0.15時,有最大之起始放電電容量199mAh/g,但經20次循環測試後,衰退率達13.57%,鈷計量數為0.25時,衰退率最低,僅6.31%,其起始放電電容量為190mAh/g。整體而言,仍以LiNi0.75Co0.25O2具有較佳之電池性能,因此選擇其做為被錳取代之鋰鈷鎳氧材料。
在LiNi0.75-zCo0.25MnzO2系統中,發現欲得到較佳之六方晶體結構之材料,煆燒溫度必須隨著錳計量數增加而適當增加,錳計量數為0.1及0.2時,合適之煆燒溫度為850℃及900℃。由SEM分析得到,於合適之煆燒溫度下,隨著錳計量數的增加,可得到粒徑愈小,粒徑分佈愈窄之顆粒。在充放電測試中,以850℃煆燒12小時之LiNi0.65Co0.25Mn0.1O2於0.1C充放電速率,充放電截止電壓為4.5及3V範圍內,有最大之起始放電電容量198mAh/g,第20次循環後之衰退率為7.58%,其在0.5C, 1C及3C之放電速率下之放電電容量分別為174mAh/g, 162mAh/g及82mAh/g。於900℃煆燒12小時之LiNi0.75-zCo0.25MnzO2,在充放電測試中,以錳計量數為0.3時,經20次循環測試後,有最低之衰退率為6.9%,其起始放電電容量為174mAh/g。
由X光近吸收邊緣光譜分析中,LiNi0.65Co0.25Mn0.1O2及LiNi0.55Co0.25Mn0.2O2 之Ni氧化價數介於Ni+2及Ni+3之間,且隨著錳計量數增加而往Ni2+偏移。Co之近吸收邊緣能量接近LiCoO2 近吸收邊緣能量,鈷之氧化價數為+3價,且不受錳計量數改變而改變。而Mn的近吸收邊緣能量接近MnO2近吸收邊緣能量,表示錳於LiNi0.75-zCo0.25MnzO2中之氧化價數接近+4價,且隨著錳計量數增加而提高。
Abstract
In this study, nano-sized cathode materials with uniform particle size distribution were synthesized by a sol-gel method. Here, in LiNiO2, Ni was partially substituted by Co and Mn to develop LiNi1-x-yCoxMnyO2 cathode materials with high capacity, high stability and low cost. This material with various Mn content was synthesized and their surface and electrochemical properties are studied.
At first, LiNi0.75Co0.25O2 cathode materials were synthesized at various sintering temperatures and sintering time. From XRD, it was found that 800oC and 12 h are the best conditions to get the pure materials with hexagonal structure. SEM analysis shows that LiNi0.75Co0.25O2 cathode materials synthesized using the above conditions have uniform particle size with average particle size of 0.8 mm. Coin — type cells were assembled and the charge and discharge cycles were carried out at 0.1 C-rate over a potential range between 3.0 V and 4.3 V. The initial capacity is 190 mAh/g and after 20 cycles, the capacity is decreased to 178 mAh/g. The fading rate is found to be 6.32 %.
Using the best synthesis conditions, 800oC and 12 h, the LiNi1-yCoyO2 cathode materials with various Co contents were synthesized. XRD patterns show that all the synthesized materials are pure. The particle size decreases and particle size distribution becomes more uniform with increasing Co content of LiNi1-yCoyO2 cathode material. Among the materials studied with different Co content, the highest capacity of 199 mAh/g is obtained when the Co content of this material is 0.15 and the capacity fading is 13.57 % after 20 cycles. However, when the Co content is 0.25, the capacity fading is the lowest, 6.31 %, although the initial capacity is slightly lower, 190 mAh/g, than the capacity obtained when the Co content is 0.15. From these results, it is believed that the LiNi0.75Co0.25O2 cathode material is the better material for getting excellent battery performance. Therefore, this material is chosen to substitute Ni by Mn to advance the lithium rechargeable batteries with new materials.
In the LiNi0.75-zCo0.25MnzO2 system, it is found that the calcination temperature increases with an increase in the Mn content to get better hexagonal structure. The required calcination temperatures for LiNi0.65Co0.25Mn0.1O2 and LiNi0.55Co0.25Mn0.2O2 are 850 and 900℃, respectively. At suitable calcination temperature, the particle size and particle size distribution are decreased when the Mn content is increased. LiNi0.65Co0.25Mn0.1O2 cathode material delivers the initial discharge capacity of 198 mAh/g at 0.1 C in the potential range 3.0 to 4.5 V. After 20 cycles, it is found that the capacity fading is 7.58 %. The capacity obtained at 0.5 C, 1.0 C and 3 C is, respectively, 174, 162 and 82 mAh/g,
LiNi0.45Co0.25Mn0.3O2 material, synthesized at 900℃ for 12 h, delivers the initial discharge capacity of 174 mAh/g with 6.9 % capacity fading after 20 cycles.
The oxidation states of synthesized cathode materials were also investigated by X-ray absorption spectroscopy (XAS). It was found that the oxidation state of Ni in LiNi0.65Co0.25Mn0.1O2 and LiNi0.55Co0.25Mn0.2O2 is between Ni+2 and Ni+3 and increases with an increase in Mn content. The near edge absorption energy of Co in these materials is almost the same as that in LiCoO2 and is independent of the Mn content. It implies that the oxidation state of Co in these materials is +3. The near edge absorption energy of Mn in these materials is nearly the same as that in MnO2 and is slightly increased with Mn content. It indicates that the oxidation state of Mn in these materials approaches +4.
目錄
中文摘要……………………………………………………………I
英文摘要……………………………………………………………IV
致謝…………………………………………………………………VII
目錄…………………………………………………………………VIII
圖目錄………………………………………………………………XI
表目錄….…………………………………………………...……XVIII
第一章 緒論……………………………………………………………1
1.1前言…………………………………………………………………1
1.2研究動機與目的……………………………………………………2
第二章 文獻回顧……………………………………………………..4
2.1鋰離子二次電池……………………………………………………4
2.1.1 陽極……………………………………………………………5
2.1.2 電解質…………………………………………………………6
2.1.3 陰極……………………………………………………………7
2.2 LiCoO2陰極材料…………………………………………………...8
2.3 LiNiO2陰極材料……………………………………………………11
2.4 LiMn2O4陰極材料………………………………………………….14
2.5 LixNi1-yCoyO2陰極材料…………………………………………….16
2.5.1 LixNiyCo1-yO2 之結構特性…………………………………….17
2.5.2 溶膠凝膠法製備LixNiyCo1-yO2材料………………………….20
2.5.3 粒徑大小對電容量之影響…………...……………………….23
2.5.4 LixNiyCo1-yO2 之熱穩定性…………………………………….25
2.6 LixNi1-y-zCoyMnzO2陰極材料…………………………………….…27
第三章 實驗…………………………………………………………....30
3.1儀器設備……………………………………………………………30
3.2實驗藥品………………………………………………………….…32
3.3陰極材料合成………………………………………………………33
3.4陰極極片製備……………………………………………………….37
3.5鈕扣型電池組裝…………………………………………………….39
3.6熱重分析實驗(TGA & DTA)……………………………………….41
3.7 XRD繞射分析……………………………...………………………41
3.8 SEM表面型態分析………………………………………………...42
3.9 X光吸收近吸收邊緣光譜(XANES)………………………………43
3.10鈕扣型電池充放電測試…………………………………..………43
第四章 結果與討論……………………………………………...…….45
4.1熱重分析(TGA & DTA)………………………………..………….45
4.1.1起始鹽類…………………………………………………………45
4.1.2 LiNi1-yCoyO2 前驅物……………………………………………49
4.1.3 LiNi0.75-zCo0.25MnzO2 前驅物………………………….………..53
4.2 陰極材料XRD晶格結構分析…………………………………….56
4.2.1 煆燒溫度之影響 (LiNi1-yCoyO2)…………………………...….56
4.2.2 煆燒時間之影響………………………………………………..59
4.2.3 部分鈷取代鋰鎳氧之影響…………………………………......62
4.2.4 鋰過計量之影響………………………………………………..66
4.2.5 煆燒溫度之影響 (LiNi0.75-zCo0.25MnzO2)……….……………..68
4.2.6 部份錳取代鋰鈷鎳氧之影響…………………………………..73
4.3 SEM表面型態分析………………………………………………...77
4.3.1 煆燒溫度之影響 (LiNi1-yCoyO2)……………………………....77
4.3.2 煆燒時間之影響…………………………………………..……78
4.3.3 部分鈷取代鋰鎳氧之影響…………………………………..…78
4.3.4 鋰過計量之影響……………………………………………..…79
4.3.5 煆燒溫度之影響 (LiNi0.75-zCo0.25MnzO2)………………..…….85
4.3.6部份錳取代鋰鈷鎳氧之影響…………………………………...86
4.4 X光近吸收邊緣光譜(XANES)………………………………….…90
4.5 鈕扣型電池充放電性能測試……………………………….……..95
4.5.1煆燒溫度之影響 (LiNi1-yCoyO2)…………….…………………95
4.5.2 持溫時間之影響……………………………………………….98
4.5.3 Li/LiNi1-yCoyO2電池系統…………………………………...…100
4.5.4鋰過計量之影響……………………………………………….113
4.5.5煆燒溫度之影響 (LiNi0.75-zCo0.25MnzO2)……………………..115
4.5.6 LiNi0.75-zCo0.25MnzO2/Li電池系統…………………………….126
4.6 綜合討論………………………………………………………….133
第五章 結論…………………………………………………..………136
第六章 參考文獻……………………………………………………..140
第六章 參考文獻
1. J. I. Yamaki, S. I. Tobishima, K. Hayashi, K. saito, Y. Nemoto, M. Arakawa, “A consideration of the morphology of electrochemically deposited lithium in a organic electrolyte”, J. Power Source, 74, 219 (1998)
2. Z. X. Shu, R. S. McMillan and J. J. Murray, “Electrochemical Intercalation of Lithium into Graphite”, J. Electrochem. Soc., 140, 922 (1993)
3. A. Mabuchi. H. Fujimoto, K. Tokumitus and T. Kasuh, “Charge-discharge Mechanism of Graphitized Mesocarbon Microbeads”, J. Electrochem. Soc., 142, 3049 (1995)
4. M. Winter and J. O. Besenhard, “Electrochemical lithiation of tin and tin-based intermetallics and composites”, Electrochem. Acta, 45, 31 (1999)
5. T. Shodai, Y. Sajurai and T. Suzuki, “Reaction mechanisms of Li2.6Co0.4N anode material”, Solid State Ionics, 122, 85 (1999)
6. K. Mizushima, P. C. Jones, P. J. Wiseman and J. B. Goodenough, “LixCoO2 (07. R. J. Gummow, M. M. Thackeray, E. I. F. Davdid and S. Hull, “Structure and electrochemistry of lithium cobalt oxide synthesized at 400℃” Mat. Res. Bull., 27, 327 (1992)
8. E. Rossen, J. N. Reimers and J. R. Dahn, “Synthesis and electrochemistry of Spinel LT-LiCoO2”, Solid State Ionics, 62, 53 (1993)
9. L. D. Dyer, B. S. Borie and G. P. Smith, “Alkali metal-nickel oxides of the type MNiO2”, J. Am. Chem. Soc., 78, 1499 (1954)
10. J. B. Goodenough, D. G. Wickham and W. J. Croft, “ Some ferromagnetic properties of the system LixNi1-xO” J. Appl. Phys., 29, 380 (1958)
11. T. Ohzuku, A. Ueda and M. Nagayama, “Electrochemistry and structural chemistry of LiNiO2 (R3m) for 4 Volt secondary lithium cells”, J. Electrochem. Soc., 140, 1862 (1993)
12. Y. M. Todorov, Y. Hideshima, H. Noguchi, M. Yoshio, “Determination of theoretical capacity of metal ion-doped LiMn2O4 as the positive electrode in Li-ion batteries”, J. Power Sources, 77, 198 (1999)
13. M. M. Thackeray, P. J. Johnson, L. A. De Picciotto, P. G. Bruce and J. B. Goodenough, “Electrochemical extraction of lithium from LiMn2O4”, Mat. Res. Bull., 19, 179 (1984)
14. M. M. Thackeray, E. I. F. David, P. G. Bruce and J. B. Goodenough, “Lithium insertion into manganese spinels”, Mat. Res. Bull.,18, 461 (1983)
15. R. J. Gummow, A. de Kock, and M.M. Thackerat, “Improved capacity retention in rechargeable 4V lithium/lithium-manganese oxide (spinel) cells”, Solid State Ionics, 69, 59 (1994)
16. C. Delmas and I. Saadoune, “Electrochemical and Physical Properties of the LixNi1-yCoyO2 phase”, Solid State Ionics, 53, 370 (1992)
17. C. Delmas, I. Saadoune and A. Rougier, “The cycling properties of the LixNi1-yCoyO2 electrode”, J. Power Sources, 43, 595 (1993)
18. T. Ohzuku, A. Ueda and M. Nagayama, Y. Iwakoshi and H. Komori, “Comparative Study of LiCoO2, LiNi1/2Co1/2 and LiNiO2 for Volt Secondary Lithium Cells”, Electrochimica Acta, 381159 (1993)
19. D. Caurant, N. Baffier, B. Garcia and J. P. Pereira-Ramos,” Synthesis by a soft chemistry route and characterization of LiNixCo1-xO2 (0≦x≦ 1) cathode materials”, Solid State Ionic, 91, 45 (1996)
20. R. J. Gummow and M. M. Thackeray, “Lithium-cobalt-nickel-oxide cathode materials prepared at 400 degree C for rechargeable lithium batteries”, Solid State Ionics, 53, 681 (1992)
21. R. Stoyanova, E. Zhecheva and L. Zarkova, “Effect of Mn-substitution for Co on the crystal structure and acid delithiation of LiMnyCo1-yO2 solid solutions”, Solid State Ionics, 73, 233 (1994)
22. E. Zhecheva and R. Stoyanova, “Stabilization of the layered crystal structure of LiNiO2 by Co-substitution”, Solid State Ionics, 66, 143 (1993)
23. B. Banov, J. Bourilkov and M. Mladenov, “Cobalt stabilized lithium-nickel oxides, cathodes in lithium rechargeable cells”, J. Power Sources, 54, 268 (1995)
24. Y. H. Sun, I. H. Oh and K. Y. Kim, “Synthesis of LiCo0.5Ni0.5O2 powers by a sole-gel method”, J. Mater., Chem., 7(8), 1481 (1997)
25. C. C. Chang, N. Scarr and P. N. Kumta, “Synthesis and electrochemical characterization of LiMO2 (M=Ni, Ni0.75Co0.25) for rechargeable lithium ion batteries”, Solid State Ionics, 112, 329 (1998)
26. C. Julien, L. El-Farh, S. Rangan and M. Massot, “Studies of LiNi0.6Co0.4O2 cathode materials prepared by the citric acid-assisted sol-gel method for lithium batteries”, J. Sol-Gel Science and Technology, 15, 63 (1999)
27. C. Julien, C. Letranchant, S. Rangan, M. Lemal, S. Ziolkiewicz, S. Castro-Carcia, L. El-Farh and M. Benkaddour, ”Layered LiNi0.5Co0.5O2 cathode materials grown by soft-chemistry via various solution methods”, Materials Science and Engineering, B76, 145 (2000)
28. H. J. Kweon, G. B. Kim, H. S. Lim, S. S. Nam and D. G. Park, ”Synthesis of LixNi0.85Co0.15O2 by the PVA-precursor method and charge-discharge characteristics of a lithium ion battery using this materials as cathode”, J. Power Sources, 83, 84 (1999)
29. G. T. K. Fey, R. F. Shiu, V. Subramanian, J. G. Chen and C. L. Chen, “LiNi0.8Co0.2O2 cathode materials synthesized by the maleic acid assisted sol-gel method for lithium batteries”, J. Power Sources, 103, 265 (2002)
30. G. T. K. Fey, V. Subramanian and J. G. Chen, “Synthesis of non-stoichiometric lithium nickel cobalt oxides and their structural and electrochemical characterization”, Electrochemistry Communication, 3, 234 (2001)
31. G. T. K. Fey, R. F. Shiu, V. Subramanian and J. G. Chen, “The effect of varying the acid to metal ion ratio R on the structural, thermal, and electrochemical properties of sol-gel derived lithium nickel cobalt oxides”, Solid State Ionics, 148, 291 (2002)
32. W. Li and K. C. Currie, “Morphology Effects on the Electrochemical Performance of LiNi1-xCoxO2”, J. Electrochem. Soc., 144, 2773 (1997)
33. J. Cho and B. Park, “Preparation and electrochemical/thermal properties of LiNi0.74Co0.24O2 cathode material”, J. Power Sources, 92 35 (2001)
34. S. P. Sheu, C. Y. Yao, J. M. Chen and Y. C. Chiou, “Influence of the LiCoO2 particle size on the performance of Lithium-ion batteries”, J. Power sources, 68, 533 (1997)
35. J. Cho, H. S. Jung, Y. C. Park, G. B. Kim and H. S. Lim, “Electrochemical Property and Thermal Stability of LiaNi1-xCoyO2 Cathode Materials”, J. Electrochem. Soc., 147(1), 15 (2000)
36. Z. Liu, A. Yu and J. Lee, “Synthesis and characterization of LiNi1-x-yCoxMnyO2 as the cathode materials of secondary lithium batteries”, J. Power Sources, 81-82, 416 (1999)
37. M. Yoshio, H. Noguchi, J. I. Itoh, M. Okada and T. Mouri,” Preparation and properties of LiCoyMnxNi1-x-yO2 as a cathode for lithium ion batteries”, J. Power Sources, 90, 176 (2000)
38. T. Ohzuku and Y. Makimura, “Layered Lithium Insertion Material of LiCo1/3Ni1/3Mn1/3O2 for Lithium-Ion Batteries”, Chemistry Letters, 642 (2001)
39. J. N. Reimers, E. Rossen, C. D. Jones and J. R. Dahn, “Structure and electrochemistry of LixFeyNi1-yO2”, Solid State Ionics, 61, 335 (1993)
40. H. Arai, S. Okada, Y. Sakuria and J. I. Yamaki, “Reversity of LiNiO2 cathode” Solid State Ionics, 95, 275 (1997)
41. C. Delmas, J. P. Peres, A. Rougier, A. Demourgues, F, Weill, A. Chadiwick, M. Broussely, F. Perton, Ph. Biensan and P. Willmann, “On the behavior of the LixNiO2 system: An electrochemical and structure overview” J. Power Sources, 68, 120 (1997)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔