(3.231.29.122) 您好!臺灣時間:2021/02/26 01:25
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:陳世偉
研究生(外文):Chen Shi-Wei
論文名稱:溶液成分對以奈米過濾處理含銅廢水影響之研究
論文名稱(外文):Effect of Solution Composition on the Removal of Copper Ion by Nanofiltration
指導教授:顧洋顧洋引用關係
指導教授(外文):Ku Young
學位類別:碩士
校院名稱:國立臺灣科技大學
系所名稱:化學工程系
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
中文關鍵詞:奈米過濾界面活性劑螯合劑溶解擴散模式薄膜理論
外文關鍵詞:NanofiltrationSurfactantChelating AgentSolution-Diffusion ModelFilm Theory
相關次數:
  • 被引用被引用:2
  • 點閱點閱:166
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究探討在不同操作條件下,如濃度、操作壓力、溶液pH值、與螯合劑(EDTA、citrate)及界面活性劑(SDS、CTAB)之添加,對奈米過濾程序分離氯化銅或硫酸銅水溶液所造成之影響。研究結果顯示,銅離子的排除率會隨著陰離子價數增加、溶液pH值下降而上升,在低操作壓力下,銅離子排除率趨近於零,隨著壓力的增加而提升,最後維持一固定值。操作壓力為100 psi時,進料溶液濃度為3 mM的氯化銅與硫酸銅排除率分別為93﹪與98﹪。存於溶液中的界面活性劑會吸附在薄膜表面,形成第二道過濾層,增加溶質擴散傳送阻力以及薄膜表面固定電荷,使銅離子的排除率提升。藉由溶解擴散模式結合薄膜理論所計算出溶質傳送參數可合理的說明添加界面活性劑對銅鹽排除率之影響。螯合劑的添加,會與銅離子形成較大分子量的螯合銅離子,穩定存在於溶液中,其分子量大小接近或大於薄膜的MWCO,使螯合銅離子不易穿透薄膜,因此銅離子排除率明顯增加。
This research studied the influence of anion, feed concentration, applied pressure, solution pH, and presence of clelating agents or surfactants on the separation of copper ions from aqueous solution by Nanofiltration. Experimental results indicate that the rejection of copper ions increases with increasing charge valence of anion and decreasing solution pH value. For experiments conducted at lower operating pressure, the rejection of copper ion tends towards zero, while at high operating pressures the rejection becomes almost constant. Under a constant operating pressure (100 psi), the rejection of 3mM CuCl2(aq) and CuSO4(aq) were 93﹪and 98﹪, respectively. The surfactant present in aqueous solution may be adsorbed by the membrane and form a secondary filtration layer on the membrane surface, which may influence the charge characteristic at the membrane surface. The combined solution-diffusion model and film theory can interpret well the effect of surfactant on the rejection of copper ions. The species of copper chelate formed in aqueous solution is highly dependent on solution pH. The rejection of copper chelate was markedly influenced by its relative size (molecular weight) to the molecular weight cut-off of membrane.
中文摘要 I
英文摘要 II
誌謝 III
目錄 IV
圖表索引 VII
符號索引 XI
第一章 緒 論 1
第二章 理論基礎及文獻回顧 3
2.1 逆滲透分離程序 3
2.1.1 逆滲透之分離原理 3
2.1.2 逆滲透膜的種類 6
2.1.3 濃度極化現象 10
2.1.4 逆滲透之質量傳送模式 13
2.2 影響逆滲透分離效果之操作因素 21
2.2.1 溶液濃度的影響 21
2.2.2 操作壓力的影響 22
2.2.3 溶液溫度的影響 23
2.2.4 溶液pH的影響 24
2.3 界面活性劑對薄膜分離效果之影響 26
2.3.1 界面活性劑之基本性質 26
2.3.2 界面活性劑之吸附行為 27
2.3.3 界面活性劑對排除率之影響 32
2.3.4 界面活性劑對薄膜結垢之影響 37
2.3.5 界面活性劑對流通量的影響 41
2.3.6 界面活性劑對薄膜界達電位的影響 42
第三章 實驗程序與設備 45
3.1 實驗儀器與設備 45
3.2 實驗藥品 47
3.2.1 所選用之界面活性劑性質 48
3.3 實驗裝置 49
3.4 實驗分析方法 51
3.4.1 重金屬分析 51
3.4.2 陰離子濃度分析 52
3.4.3 總有機碳分析 55
3.5 實驗方法及條件 57
3.5.1 實驗操作步驟 57
3.5.2 逆滲透薄膜的清洗及保存 58
第四章 結果與討論 61
4.1 以奈米過濾分離含銅水溶液之探討 61
4.1.1 陰離子效應 61
4.1.2 進料濃度效應 64
4.1.3 溶液pH值效應 68
4.1.4 操作壓力效應 73
4.2 界面活性劑對奈米過濾分離含銅水溶液之影響 77
4.2.1 界面活性劑濃度效應 77
4.2.2 溶液pH值效應 85
4.2.3 傳送模式之參數計算 89
4.3 螯合劑對奈米過濾分離含銅水溶液之影響 95
4.3.1 EDTA對奈米過濾分離含銅水溶液之影響 95
4.3.2 Citrate對奈米過濾分離含銅水溶液之影響 101
第五章 結論與建議 107
5.1 結論 107
5.2 建議 108
參考文獻 109
附錄圖表 117
作者簡介 129
于仰聖,“以逆滲透法處理螯合重金屬廢水之研究”,82學年碩士學位論文,國立台灣工業技術學院化學工程系碩士班,台灣(1993)。
王麗香,“以紫外線/過氧化氫程序處理含氮化合物水溶液反應行為之研究”,84學年碩士學位論文,國立台灣工業技術學院化學工程系碩士班,台灣(1995)。
吳立群,“以逆滲透濃縮酪蛋白磷胜太之輸送現象”,87學年碩士學位論文,國立台灣大學化學工程系碩士班,台灣(1998)。
郭文正,曾添文,“薄膜分離”,新科技書局,台灣(1991)。
童鐘慶,“陰/非離子型界面活性劑與金屬離子/有機物的微胞強化超過濾程序”,89學年碩士學位論文,國立成功大學化學工程系碩士班,台灣(2000)。
蔣本基,“工業廢水逆滲透處理”,工業污染防制技術手冊之十八,經濟部工業局,台灣(1988)。
趙承琛,“界面活性劑化學”,復文書局,台灣(1990)。
趙承琛,“界面科學基礎”,復文書局,台灣(1991)。
Adamson, A. W., Physical Chemistry of Surface, 4th ed., Wiley, New York, U.S.A. (1982).
Ahn, K. H., Song, K. G., Cha, H. Y. and Yeom, I. T., “Removal of Ions in Nickel Electroplating Rinse Water Using Low-Pressure Nanofiltration,” Desalination, Vol.122, pp.77-84 (1999).
Akay, G. and Wakeman, R. J., “Ultrafiltration and Microfiltration of Surfactant Dispersions - An Evaluation of Published Research,” Chemical Engineering Research and Design, Vol.71, Part A, pp.411-420 (1993).
Bard, A. J. and Faulkner, L. R., Electrochemical Methods Fundamentals and Applications, John-Wiley & Sons, New York, U.S.A. (1980).
Chai, X., Chen, G., Yue, P. and Mi, Y., “Pilot Scale Membrane Separation of Electroplating Waste Water by Reverse Osmosis,” Journal of Membrane Science, Vol.123, pp.235-242 (1997).
Chandar, P., Somasundaran, P. and Turro, N. J., “Fluorescence Probe Studies on the Structure of the Adsorbed Layer of Dodecyl Sulfate at the Alumina-Water Interface,” Journal of Colloid Interface Science, Vol.117, pp.31-42 (1987).
Chen, V., Fane, A. G. and Fell, C. J. D., “The Use of Anionic Surfactants for Reducing Fouling of Ultrafiltration Membranes: Their Effects and Optimization,” Journal of Membrane Science, Vol.67, pp.249-261 (1992).
Chianese, A., Ranauro, R. and Verdone, N., “Treatment of Landfill Leachate by Reverse Osmosis,” Water Research, Vol.33, No. 3, pp.647-652 (1999).
Childress, A. E. and Elimelech, M., “Effect of Solution Chemistry on the Surface Charge of Polymeric Reverse Osmosis and Nanofiltration Membrane,” Journal of Membrane Science, Vol.119, pp.253-268 (1996).
Childress, A. E. and Deshmukh, S. S., “Effect of Humic Substances and Anionic Surfactant on the Surface Charge and Performance of Reverse Osmosis Membrane,” Desalination, Vol.118, pp.167-174 (1998).
Childress, A. E. and Elimelech, M., “Relating Nanofiltration Membrane Performance to Membrane Charge (Electrokinetic) Characteristics,” Environmental Science and Technology, Vol.34, No.17, pp.3710-3716 (2000).
Elimelech, M., Chen, W. H. and Waypa, J. J., “Measuring the Zeta (Electrokinetic) Potential of Reverse Osmosis Membranes by a Streaming Potential Analyzer,” Desalination, Vol.95, pp.269-286 (1994).
Elimelech, M., Zhu, X., Childress, A.E. and Hong, S., “Role of Membrane Surface Morphology in Colloid Fouling of Cellulose Acetate and Composite Aromatic Polyamide Reverse Osmosis Membranes,” Journal of Membrane Science, Vol.127, pp.101-109 (1997).
Ernst, M., Bismarck, A., Springer, J. and Jekel, M., “Zeta-Potential and Rejection Rates of a Polyethersulfone Nanofiltration Membrane in Single Salt Solutions,” Journal of Membrane Science, Vol.165, pp.251-259 (2000).
Freger, V., Arnot, T. C. and Howell, J. A., “Separation of Concentrated Organic Salt Mixture by Nanofiltration,” Journal of Membrane Science, Vol.178, pp.185-193 (2000).
Hagmeyer, G. and Gimbel, R., “Modeling the Salt Rejection of Nanofiltration Membranes for Ternary Ion Mixtures and for Single Salts at Different pH Values,” Desalination, Vol.117, pp.247-256 (1998).
Hanra, A. M. and Ramachandhran, V., “RO Performance Analysis of Cellulose Acetate and TFC Polyamide Membrane Systems for Separation of Trace Contaminants,” Desalination, Vol.104, pp.175-183 (1996).
Ho, W. S. and Sirkar, K. K., Membrane Handbook, Van Nostrand Reinhold, New York, U.S.A. (1992).
Hough, D. B. and Rendall, H. M., in Adsorption from Solution at the Solid/Liquid Interface, Academic Press, London, Britain (1983).
Hunter, R. J., Zeta Potential in Colloid Science, Academic Press, New York, U.S.A. (1981).
Hurndall, M. J., Jacobs, E. P. and Sanderson, R. D., “Performance of Novel Reverse Osmosis Membranes Made from Poly-2-Vinylimidazoline. I.,” Desalination, Vol.86, pp.135-154 (1992).
Kallay, N., Interfacial Dynamics, M. Dekker, New York, U.S.A. (2000).
Knyazkova, T. V. and Kavitskaya, A. A., “Improved Performance of Osmosis with Dynamic Layers onto Membrane in Separation of Concentrated Salt Solution,” Desalination, Vol.131, pp.129-136 (2000).
Koyama, K., Kimura, K., Hashida, I. and Nishimura, M., “Rejection of Phenolic Derivatives in Aqueous Solution by an Interpolymer Anionic Composite Reverse Osmosis Membrane,” Journal of Applied Polymer Science, Vol.29, pp.2929-2938 (1984).
Lee, J., Martic, P. A. and Tan, J. S., “Protein Adsorption on Pluronic Copolymer-Coated Polystyrene Particles,” Journal of Colloid and Interface Science, Vol. 131, No. 1, pp.252-266 (1989).
Leob, S. and Sourirajan, S., “Sea Water Demineralization by Means of an Osmotic Membrane,” Advances in Chemistry Series, Vol.38, pp.117-128 (1963).
Levenstein, R., Hasson, D. and Semiat, R., “Utilization of the Donnan Effect for Improving Electrolyte Separation with Nanofiltration Membranes,” Journal of Membrane Science, Vol.116, pp.77-92 (1996).
Lonsdale, H. K., “The Growth of Membrane Technology,” Journal of Membrane Science, Vol.10, pp.81-96 (1982).
Marinas, B. J., “Reverse Osmosis Technology for Wastewater Reuse,” Water Science and Technology, Vol.24, pp. 215-217 (1990).
Matsuura, T. and Sourirajan, S., “Reverse Osmosis Separation of Single and Mixed Alcohol in Aqueous Solutions Using Porous Cellulose Acetate Membranes,” Journal of Applied polymer Science, Vol.16, pp.2531-2554 (1972).
Mehiguene, K., Garba, Y., Taha, S., Gondrexon, N. and Dorange, G., “Influence of Operating Conditions on the Retention of Copper and Cadmium in Aqueous Solutions by Nanofiltration: Experimental Results and Modeling,” Separation and Purification Technology, Vol.15, pp.181-187 (1999).
Mehiguene, K., Taha, S., Gondrexon, N., Cabon, J. and Dorange, G., “Copper Transfer Modeling Through a Nanofiltration Membrane in the Case of Ternary Aqueous Solution,” Desalination, Vol.127, pp.135-143 (2000).
Morel, G., Ouazzani, N., Graciaa, A. and Lachaise, J., “Surfactant Modified Ultrafiltration for Nitrate Ion Removal,” Journal of Membrane Science, Vol.133, pp.47-57 (1997).
Morel, G., Graciaa, A. and Lachaise, J., “Enhanced Nitrate Ultrafiltration by Cationic Surfactant,” Journal of Membrane Science, Vol.56, pp. 1-12 (1991).
Mrinas, B. J., “Reverse Osmosis Technology for Wastewater Reuse,” Water Science and Technology, Vol.24, pp.215-227 (1991).
Murthy, Z. V. P. and Gupta, S. K., “Simple Graphical Method to Estimate Membrane Transport Parameters and Mass Transfer Coefficient in a Membrane Cell,” Separation Science and Technology, Vol.31, pp.77-94 (1996).
Murthy, Z. V. P. and Gupta, S. K., “Estimation of Mass Transfer Coefficient Using a Combined Nonlinear Membrane Transport and Film Theory Model,” Desalination, Vol.109, pp.39-49 (1997).
Murthy, Z. V. P. and Gupta, S. K., “Sodium Cyanide Separation and Parameter Estimation for Reverse Osmosis Thin Film Composite Polyamide Membrane,” Journal of Membrane Science, Vol.154, pp.89-103 (1999).
Naaktageboren, A. J., “Characterization of a New Reverse Osmosis Composite Membrane for Industrial Application,” Desalination, Vol.68, pp.223-231 (1988).
Nishimura, S., Scales, P. J., Biggs, S. R. and Healy, T. W., “AFM Studies of Amine Surfactant Hemimicelle Structures at the Mica-Water Interface,” Colloid Surface A, Vol.103, pp.289-297 (1995).
Oak, M. S., Kobayashi, T., Wang, H. Y., Fukaya, T. and Fujii, N., “pH Effect on Molecular Size Exclusion of Polyacrylonitrile Ultrafiltration Membranes Having Carboxylic Acid Groups,” Journal of Membrane Science, Vol.123, pp.185-195 (1997).
Osada, Y. and Nakagawa, T., Membrane Science and Technology, M. Dekker, New York, U.S.A. (1992).
Parekh, B. S., Reverse Osmosis Technology: Applications for High-Purity-Water Production, M. Dekker, New York, U.S.A. (1988).
Porter, M. C., Handbook of Separation Techniques for Chemical Engineers, 3rd ed., McGraw-Hill, New York, U.S.A. (1997).
Rautenbach, R. and Albrecht, R., Membrane Processes, Wiley, New York, U.S.A. (1989).
Reid, C. E. and Breton, E. J., “Water and Ion Flow Across Cellttlosic Membrane,” Journal of Applied Polymer Science, Vol.1, pp.133-143 (1959).
Rosen, M. J., Surfactants and Interfacial Phenomena-Dispersion and Aggregation of Solid in Liquid Media by Surfactants, 2nd ed., John-Wiley & Sons, New York, U.S.A. (1989).
Sabbatovskii, K. G., Sobolev, V. D. and Churaev, N. V., “Modification of a Composite Nanofiltration Membrane by Cationic Surafctant Adsorption,” Colloid Journal, Vol.58, pp.636-638 (1996).
Schaep, J., Van der Bruggen, B., Vandecasteele, C. and Wilms, D., “Influence of Ion Size and Charge in Nanofiltration,” Separation and Purification Technology, Vol.14, pp.155-162 (1998).
Shaw, D. J., Electrophoresis, Academic Press, London, Britain (1969).
Staude, E., Hinke, E. and Malejka, F., “Interactions in Reverse Osmosis of Electrolyte/Charged Surfactant Solutions through Porous Membrane,” Colloid and Surfaces, Vol.42, pp.365-374 (1989).
Sutzkover, I., Hasson, D. and Semiat, R., “Simple Technique for Measuring the Concentration Polarization Level in a Reverse Osmosis System,” Desalination, Vol.131, pp.117-127 (2000).
Ujang, Z. and Anderson, G. K., “Application of Low-Pressure Reverse Osmosis Membrane for Zn2+ and Cu2+ Removal from Waste Water,” Water Science and Technology, Vol.34, pp.247-253 (1996).
Ujang, Z. and Anderson, G. K., “Effect of the Operating Parameters on the Separation of Metal Chelates Using Low Pressure Reverse Osmosis,” Water Science and Technology, Vol.41, pp.135-142 (2000).
van der Horst, H. C., Timmer, J., Robbertsen, M. K. T. and Leenders, J., “Use of Nanofiltration for Concentration and Demineralization in the Dairy Industry:Model for Mass Transport ” Journal of Membrane Science , Vol.104, pp.205-218 (1995).
Wilbert, M. C., Pellegrino, J. and Zydney, A., “Bench-Scale Testing of Surfactant-Modified Reverse Osmosis/Nanofiltration Membranes,” Desalination, Vol.115, pp.15-32 (1998).
Xu, Y. and Leburn, R. E., “Investigation of the Solute Separation by Charged Nanofiltration Membrane:Effect of pH, Ionic Strength and Solute Type” Journal of Membrane Science, Vol.158, pp.93-104 (1999).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔