(3.239.33.139) 您好!臺灣時間:2021/03/08 18:32
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:林世文
論文名稱:三成份熱整合整廠系統的設計與控制
論文名稱(外文):interactions between design and control flor heat-integrated ;lantwide systems: ternary systems with two recycles
指導教授:錢義隆余政靖
學位類別:碩士
校院名稱:國立臺灣科技大學
系所名稱:化學工程系
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:121
中文關鍵詞:熱整合整廠控制迴流系統
相關次數:
  • 被引用被引用:0
  • 點閱點閱:180
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
中文摘要
一工廠是由多個子單元所構成,由於各單元間的交互作用,使得在化工製造程序中的設計也必須愈驅整合,其中具有迴流結構的整合型工廠便是典型的例子,而本論文所探討的便是一具有反應器/分離器的三成份迴流系統,其操作性能與以往串級單元的程序迥然不同。然而在迴流結構中分離單元所耗費的能源也就是系統的操作費用,往往佔了年總成本的重要比例,尤其是在低轉化率的系統中,因此蒸餾塔間能量的整合對於節能意識高漲的今日亦日趨重視。因此本研究所將討論的便是當迴流系統中加入熱整合結構後穩態設計和系統動態間的交互關係。
我們所探討的系統中包含了一個 的反應,其中A為輕組成,B為重組成,而在分離器部份我們使用了兩種排序結構,分別為直接排序(Direct sequence)和間接排序(Indirect sequence)結構,並將熱整合結構加入此兩個排序中。在穩態經濟評估中我們先以能量節省的角度出發尋找各排序的最適化操作路徑,並提出選擇能量整合方向的準則,最後再以年總成本為基礎找尋各排序的最適化操作路徑。接下來我們針對經濟最適化路徑上的操作點分析其穩態可操作度,我們將發現程序中蒸餾塔迴流入反應器的迴流股對系統操作度的影響,在固定的迴流率操作範圍內,我們以各系統所能達到之最大產能變化程度作為作業性能比較的基準。最後我們針對不同的熱整合結構提出控制策略,並以嚴謹的動態模擬比較各熱整合結構和無熱整合結構度在最適化操作濃度下對產能提升時的動態響應。
藉由迴流系統的穩態和動態分析我們了解程序設計和程序的控制是建構一工廠時密不可分的兩個部份,以往由程序工程師設計好的系統再交由控制工程師建立控制結構的模式,常因系統被設計在操作度不佳的條件中,使得控制工程師再怎麼努力也無法使系統能有平穩的作業性能,也就是說穩態設計階段已決定了系統的操作度。
Abstract
Last decade has seen significant progress in the design of plantwide control systems and most of the work addresses the issue of control structure design or the effects of material recycle on overall process dynamics. The timely publication of Luyben et al. (1999) provides an updated summary. However, much less work has been done on the practically important process: heat-integrated recycle plants where both material and energy recycles exist simultaneously. The heat-integration is a trend of no-return for energy intensive chemical process industries. This work analyzes the tradeoff between steady-state economics and dynamic controllability for heat-integrated recycle plants. The process consists of one reactor, two distillation columns, and two recycle streams first studied by Tyreus and Luyben (1993) and further explored by Cheng and Yu (2002) and, in this work, the two distillation columns are heat-integrated. At steady-state design, the concept of optimality regions for column sequencing (Glinos and Malone, 1988) is extended to the heat-integrated recycle plants. First, a boundary in the composition space can be established to identify the trajectory with most significant percent energy savings as well as correct direction for heat-integration (e.g., forward or backward integration). Because the design problem differs from the column sequencing problem in that we can design the reactor composition, optimal trajectories for recycle plants with direct and indirect sequences are derived as the conversion varies. Provided with the direction of heat-integration, at any given conversion, the correct flowsheet is established for both sequences. Moreover, the results can be derived analytically using simplified cost model of Malone et al. (1985). For dynamic controllability, the reachable composition space is identified as the recycle ratios (recycle flow rate/ production rate) vary. This provides the most severe test on the disturbance rejection capability for any given design, and, consequently, the undesirable regions for operation with different separation sequences are identified. The results clearly indicate that a little tradeoff between steady-state design and dynamic control may result at low conversion (e.g., less than 3%), however, at medium to high conversions, it is not likely to occur, if the plant is designed along the optimal trajectories. Moreover, at the true optimum, the trade-off is not likely to occur. Finally, rigorous nonlinear simulations are used to illustrate the operability of different designs. The results reveal that good control can be achieved for well designed heat-integrated recycle plants (e.g., compared to the plants without energy integration) with close to 20% saving in total annual cost.
目錄
中文摘要 Ⅰ
英文摘要 III
誌謝 V
目錄 VI
圖索引 IX
表索引 XIV
第一章 序論 1
1 簡介…………………………………………………1
第二章 穩態經濟評估與設計 4
2.1 背景………………………………………………4
2.2 程序概述………………………………………..4
2.3程序設計………………………………………….6
2.4無熱整合系統之穩態經濟評估…………….. 10
2.4.1建立費用模式…………………………….. 11
2.5熱整合系統之穩態經濟評估………………... 15
2.5.1 能源節…………………………………….. 15
2.5.2 年總成本(TAC)…………………………19
2.5.2-1 蒸餾塔內的壓力和溫度………….. 20
2.5.2-2 能量整合方向……………………… 22
2.6 最佳化操作路徑……………………………… 26
2.6.1 其他參數對最佳化路徑的影響…….… 27
2.7 總結………………………………………….…. 28
第三章 穩態可操作度分析 52
3.1 簡介…………………………………………….. 52
3.2 新的操作變數………………………………… 52
3.3 作業性能分析………………………………… 54
3.3.1 無熱整合迴流系統…………………… 55
3.3.2 熱整合迴流系統………………………… 55
3.3.2-1 間接排序…………………………... 56
3.3.2-2 直接排序……………………………. 58
3.4 總結…………………………………………….. 61
第四章 動態模擬 70
4.1 背景………………………………………..70
4.2 控制結構………………………………………..71
4.2.1 蒸餾塔間蒸計量不等的迴流系統….…71
4.2.1-1 直接排序結構………………………..71
4.2.1-2 間接排序結構………………………..73
4.2.2 蒸餾塔間蒸氣量相等的迴流系統…….74
4.3 控制器的調諧……………………………….75
4.3.1 液位控制…………………………………..75
4.3.2 濃度環路控制 …………………………..76
4.4 閉環路徑能………………………………….….77
4.4.1 低轉化率下的閉環路測試……………..77
4.4.2 真實最適化(true optimal)下的閉環路測試………………………………………....79
4.4.3 不同相對揮發度系統之真實最適化(true optimal)下的閉環路測試…………………..80
4.5 總結……………………………………………...81
第五章 結論 112
參考文獻 114
附錄A 118
作者簡介 121
參考文獻
[1] Agrawal, R. “Multieffect Distillation for Thermally Coupled Configurations”, AIChE J. 2000, 46, 2211-2224.
[2] Agrawal, R.; Fidkowski, Z. T. “New Thermally Coupled Schemes for Ternary Distillation”, AIChE J. 1999, 45, 485-496.
[3] Biegler, L. T.; Grossmann, , I. E.; Westergerg, A. W. Systematic Methods of Chemical Process Design; Prentice Hall PTR: Upper Saddle River, New Jersey, 1997.
[4] Bildea , C. S.; Dimian A. C. “ Interaction Between Design And Control Of A Heat-Integrated Distillation System With Prefractionator”, Trans IchemE. 1999, 77, 597-608.
[5] Cheng, Y. C.; Yu, C. C. “Optimal Region for Design and Control of Ternary Systems with Two Recycle Streams”, AIChE J. (submitted).
[6] Cheung, T. F.; Luyben, W. L. “Liquid-Level Control in Single Tanks and Casecade of Tanks with Proportional-Only and Proportional-Integral Feedback Controllers”, Ind. Eng. Chem. Fundam. 1979, 18, 15-21.
[7] Chiang, T. P.; Luyben W. L. “ Comparison of Energy Consumption in Five Heat-Integrated Distillation Configurations”, Ind. Eng. Chem. Proc. Des. Dev. 1983, 22, 175.
[8] Chiang, T. P. “Control and Dynamics of Heat-Integrated Distillation Columns”, Ph.D. Thesis, 1985.
[9] Chiang, T. P.; Luyben W. L. “ Incentives for dual Composition Control in single and Heat-Integrated Binary Distillation Columns”, Ind. Eng. Chem. Fundam. 1985, 24, 352-359.
[10] Chiang, T. P.; Luyben W. L. “ Comparison of the Dynamic Performances of Three Heat-Integrated Distillation Configurations”, Ind. Eng. Chem. Res. 1988, 27, 99-104.
[11] Douglas, J. M. Conceptual Design of Chemical Processes; McGraw-Hill: New York, 1988.
[12] Elliott, T.R.; Luyben, W. L. “A Capacity-base Economic Approach for the Quantitative Assessment of Process Controllability During the Conceptual Design Phase”, Ind. Eng. Chem. Res. 1995, 34, 3907-3915.
[13] Ellilott, T. R.; Luyben, W. L. “Quantitative Assessment of Controllability during the Design of a Ternary System with Two Recycle Streams”, Ind. Eng. Chem. Res. 1996, 35, 3470-3479.
[14] Emtir, M.; Szitkai, Z.; Mizsey, P. “Energy Savings of Integrated and Coupled Distillation Systems”, Computers Chem. Engng. 2001, 25, 119-140.
[15] Glinos, K.; Malone, M. F. “Minimum Reflux, Product Distribution, and Lumping Rules for Multicomponent Distillation”, Ind. Eng. Chem. Process Des.Dev.1984, 23, 764-768.
[16] Glinos, K.; Malone, M. F. “Optimality Regions for Complex Column Alternatives in Distillaion Systems”, Chem. Eng. Res. Des. 1988, 66, 229-240.
[17] Groenendijk, A. J.; Dimian, A. C.; Iedema, P. D. “Systems Approach For EvaluationDynamics and Plantwide Control of Complex Plants”, AIChE J. 2000, 46, 133-145.
[18] Luyben, M. L. Process Modeling, Simulation and Control for Chemical Engineers; 2nd Ed., McGraw-Hill: New York, 1990.
[19] Luyben, M. L.; Tyreus, B. D., Luyben, W. L. “Analysis of Control Structures for Reaction/Separation/Recycle Processes with Second-Order Reactions”, Ind. Eng. Chem. Res. 1996, 35, 758-771.
[20] Luyben, W. L. “Design and Control Degrees of Freedom”, Ind. Eng. Chem. Res. 1996, 35, 2204-2214.
[21] Luyben, W. L.; Luyben, M. L. Essentials of Process Control; McGraw-Hill: New York, 1997.
[22] Luyben, W. L.; Tyreus, B. D.; Luyben, M. L. Plantwide Process Control; McGraw-Hill: New York, 1999.
[23] Lyman, P. R.; Luyben, W. L. “Production Rate Changes in a Ternary Two-Recycle Process”, Ind. Eng. Chem. Res. 1996, 35, 2198-2203.
[24] Malone, M. F.; Glinos, K.; Marquez, F. E.; Douglas J. M. “Simple, Analytical Criteria for the Sequencing of Distillation Columns”, AIChE J. 1985, 31, 683-689.
[25] Nadgir,V. M.; Liu, Y.A. “Studies in Chemical Process Design and Synthesis. V. A Simple Heurixstic Method for the Systematic Synthesis of Initial Sequences for Multicomponent Separations”, AIChE J. 1983, 29, 926-934.
[26] Nishida, N.; Stephanopoulos, G.; Westergerg, A. W. “A Review of Porcess synthesi “, AIChE J. 1981, 27, 321.
[27] Price, R. M.; Georgakis, C. Plantwide Regulatory Control Design Procedure Using a Tiered Framework. Ind. Eng. Chem. Res. 1993, 32, 2693-2705.
[28] Subramanian, S.; Georgakis, C. “Steady-state Operability Characteristics of Idealize Reactors”, chem. Eng. Sci. 2001, 56, 5111-5130.
[29] Tyreus, B. D.; Luyben W. L. “Dynamics and control of Recycle Systems. 4. Ternary Systems with One oor Two Recycle Streams”, Ind. Eng. Chem. Res. 1993, 32, 1154-1162.
[30] Vinson, D. R.; Georgakis, C. “A New Measure of Process Output Controllability”, J. Process Control 2000, 10, 185-194.
[31] Wankat, P. C. ”Multieffect distillation Processes”, Ind. Eng. Chem. Res. 1993, 32, 894-905.
[32] Wu, K. L. “Plant-wide Process Design and Control”, Ph.D. Thesis, 1996.
[33] Wu, K. L.; Yu, C. C. “Reactor/Separator Processes with Recycle-1. Candidate Control Structure For Operability”, Computers Chem. Engng. 1996, 20, 1291-1316.
[34] Yu, C. C. Autotunting of PID Controllers: Relay Feedback Approach; Springer-Verlag: London, 1999.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔