(3.238.186.43) 您好!臺灣時間:2021/03/01 09:55
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:葛明德
研究生(外文):Ger Ming-Der
論文名稱:無電鍍Ni-P/PTFE複合鍍層之研究
論文名稱(外文):The Study of Electroless Ni-P/PTFE Composite Coatings
指導教授:黃炳照黃炳照引用關係
指導教授(外文):Hwang Bing-Joe
學位類別:博士
校院名稱:國立臺灣科技大學
系所名稱:化學工程系
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:138
中文關鍵詞:無電鍍複合鍍層鎳磷合金聚四氟乙烯界面活性劑
外文關鍵詞:ElectrolessNi-P/PTFEComposite Coatingssurfactant
相關次數:
  • 被引用被引用:6
  • 點閱點閱:1106
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
無電鍍鎳鍍層由於本身具有鍍層均厚性佳、高鍵結強度、良好之可銲性及導電性、優良之耐蝕性與抗磨耗特性,如果能將固體潤滑劑,如石墨(graphite)、鐵氟龍(PTFE)、二硫化鉬(MoS2)等微粒摻合到無電鍍鎳鍍層中,可使鍍層的機械與與潤滑性質更加優異。將PTFE與無電鍍Ni-P合金共沈積,其複合鍍層除了具有耐蝕功能外,尚具有低摩擦係數耐磨及脫膜性能性,因此Ni-P/PTFE複合鍍層應用極廣,目前受到高度重視。
一般而言,界面活性劑不僅可增加PTFE微粒表面之潤濕性及電荷,幫助微粒在鍍液中穩定分散,並可藉由其增加的正電荷而使微粒在陰極表面之靜電吸引力增加。雖然界面活性劑在Ni-P/PTFE複合無電鍍系統有其必要性,但其共析鍍之機制仍不清楚,選擇適當的界面活性劑仍十分困難。因此,本論文探討界面活性劑在Ni-P/PTFE複合鍍中所扮演之角色及機制,並深入觀察沈積現象,以瞭解PTFE微粒共沈積之模式,另將研究界面活性劑在PTFE微粒表面之吸附現象,最後並探討複合鍍層於水潤滑環境之磨耗性能。
在探討界面活性劑對無電鍍Ni-P/PTFE複合鍍層共沈積過程影響時,實驗針對FC-134及CTAB兩種陽離子型界面活性劑,分別量測其對PTFE微粒界面電位(Zeta potential)之影響,及其在不同底材之陰極反應性之大小。結果顯示在PTFE微粒共沈積過程中,不僅微粒之界面電位重要,同時界面活性劑之陰極反應性亦扮演重要之角色。根據此實驗結果我們提出一個PTFE微粒共沈積之模式,來說明PTFE微粒之界面電位是主控沈積過程之弱吸附大小,而吸附在微粒表面之界面活性劑陰極反應性則決定強吸附之大小。
在更進一步的實驗中,由觀察並比較PTFE微粒在無電鍍初始短暫之共沈積行為中發現,界面活性劑之陰極反應性受基材影響很大,造成Ni-P/PTFE鍍層在初始成長時,鍍層中PTFE微粒含量隨沈積時間變化。在共沈積過程中,界面活性劑在界面的反應提供了關鍵之吸附力,當吸附在微粒上之界面活性劑反應性較強時,較大的微粒比較容易致被包覆至鍍層中。當界面活性劑在底材上之陰極反應性大於鍍層上,Ni-P/PTFE鍍層隨著沈積時間增加,鍍層中PTFE含量下降;而當界面活性劑在底材上之陰極反應性小於鍍層上,Ni-P/PTFE鍍層明顯地隨著沈積時間增加,鍍層中PTFE微粒含量增大,此種沈積結構可使基材與鍍層之附著力較強。
由氟碳系的陽離子界面活性劑以及碳氫系的非離子界面活性劑的吸附實驗中,發現PTFE微粒表面吸附陽離子界面活性劑後,界面電位由原來之負電位改變成正電位,而加入非離子界面活性劑可增加陽離子界面活性劑之吸附量,同時也使PTFE微粒之界面電位提高。
在研究界面活性劑濃度與PTFE微粒濃度對Ni-P/PTFE複合鍍層組成影響的實驗中,顯示Ni-P合金及PTFE微粒沈積速率受三個因素影響,即微粒之界面電位(弱吸附)、界面活性劑的反應性(強吸附)與界面活性劑在基材表面之佔有率,此三種因素主導了Ni-P合金(Vm)與PTFE微粒共沈積速率(Vp)。
Ni-P-PTFE複合鍍層於水潤滑系統之磨潤特性的探討,是藉由連續摩擦係數及磨耗阻抗的量測,評估此鍍層於水潤滑磨潤系統之功效。另外,以高荷重條件下測試,以瞭解「親/疏水」材料於水潤滑環境中的整體性能。實驗結果顯示:摩擦係數與磨耗與該磨潤系統材料的親疏水性質存在一強烈關係,Ni-P-PTFE複合鍍層可於適當的親/疏水磨潤環境中,提供一良好的水潤滑效果,大幅減少磨耗損失。
It is well known that the electroless Ni-P coating has a highly even plating capability, high bonding strength, excellent weldability, electrical conductivity, good antiwear properties, and controllable magnetic properties through suitable heat treatment. Furthermore, the mechanical and tribological properties of the electroless Ni-P coatings can be improved by the incorporation of solid particles of lubricants such as graphite, PTFE, MoS2 etc. Due to its non-stick nature, non-galling, excellent dry lubricity, low friction, good corrosion resistance and non-flammability, the electroless Ni-P/PTFE composite coating becomes of great interest.
Surfactants can not only improve the stability of a suspension by increasing the wettability and the surface charge of suspended particles but also enhance the electrostatic adsorption of suspended particles on a cathode surface by increasing their net positive charge. Although the role of surfactant is essential, it is still unclear in the codeposition of PTFE with electroless Ni-P coating. In this work, the role of surfactants and the transient phenomena in the codeposition of PTFE particles with the electroless Ni-P plating, the adsorption behavior of surfactants onto the surface of PTFE particles, and the performance of Ni-P-PTFE material in water lubrication system, were investigated.
The zeta potential of the surfactant-modified PTFE and the cathodic reactivity of the surfactants on the various substrates were measured. It was found that not only the zeta potential of the PTFE particles but also the cathodic reactivity of the surfactants play important role in the codeposition process. A model was also proposed to elucidate the role of surfactants in the codeposition of PTFE with the electroless Ni-P plating. The zeta potential of the PTFE particles and the cathodic reactivity of the surfactants adsorbed on the PTFE particles dominate the weak adsorption and the strong adsorption in the codeposition process, respectively.
Two surfactants (CTAB and FC134) were utilized for comparison on the transient phenomena of the codeposition of PTFE with electroless Ni-P coating at the early stage. The composition variation of the deposited layer is strongly related to the cathodic reactivity of the surfactants depending on the substrates at the early stage. When the cathodic reactivity of the surfactants is higher, correspondingly the PTFE particles are more easily embedded in the codeposition layer. The volume fraction of PTFE loading increases with the growth of the codeposited layer when the cathodic reactivity of surfactants on a substrate is less than that on the deposited layer. On the contrary, the volume fraction of PTFE loading decreases with the growth of the codeposited layer. Increasing the PTFE loading with the growth of the codeposited layer would provide good adhesion between the substrate and the codeposited layer.
The cationic fluorocarbon and nonionic hydrocarbon surfactants were employed to modify the surface properties of PTFE particle. From the results of adsorption experiments and the zeta potential measurements, it was found that the zeta potential of PTFE particles became positive after adsorption of cationic fluorocarbon surfactant. The amount of adsorption of cationic fluorocarbon surfactant as well as the zeta potential of PTFE particles increased with the incorporation of nonionic hydrocarbon surfactant.
The effect of the surfactant concentration and the PTFE loading on the deposition rate of Ni-P matrix and PTFE particles were also investigated. It indicates that the deposition behaviors of the Ni-P matrix and PTFE particles depends strongly on the weak adsorption of PTFE particles on the substrate, the reactivity of the surfactants (strong adsorption) and the surface coverage of the surfactant on the substrate.
The performance of Ni-P-PTFE material on water lubrication system was examined by continuous friction and wear resistance measurement. In addition, the overall performance of water lubrication produced by the coupling of hydrophilic and hydrophobic materials under higher load condition was also investigated. The results reveal that the friction coefficient and wear are strongly related to the wettability of coupling material. Ni-P-PTFE material can provide stronger property together with the hydrophobic/hydrophilic consideration; it enables us to decrease the wear loss.
目 錄
中文摘要 I
英文摘要 III
誌謝 VII
目錄 VIII
圖表索引 XIII
符號說明 XX
第一章 前言 1
1.1 簡介 1
1.2 文獻回顧 3
1.2.1 Ni-P/PTFE複合鍍層之性質 3
1.2.2 操作因素對Ni-P/PTFE複合鍍層之影響 7
1.2.3 複合鍍共沈積機制與原理 9
1.2.4 無電鍍反應機制 12
1.3 研究動機與本文大綱 14
1.3.1 研究動機 14
1.3.2 本文大綱 18
第二章 實驗方法與原理 20
2.1 儀器設備與實驗藥品 20
2.1.1 儀器設備 20
2.1.2 實驗藥品 21
2.2 無電鍍鎳複合鍍層製備 22
2.3 儀器原理與實驗方法 23
2.3.1 表面電荷及粒徑測試儀 23
2.3.2 接觸角分析儀 25
2.3.3 紫外光/可見光分光光度計 27
2.3.4 迴轉磨耗試驗機 28
第三章 界面活性劑在Ni-P/PTFE複合鍍中所扮演之角色及機制 32
3.1 前言 32
3.2 實驗方法 33
3.2.1 實驗藥品 33
3.2.2 界面電位量測 34
3.2.3 電化學極化曲線量測 34
3.3 結果與討論 35
3.3.1 界面電位量測 35
3.3.2 Ni-P/PTFE複合鍍 38
3.3.3 極化曲線測試 38
3.4 Ni-P/PTFE複合無電鍍理論模式 49
3.4.1 模型描述Model Description 49
3.4.2 模型推導Model development 51
3.5 結論 55
第四章 Ni-P/PTFE複合鍍初始階段沈積現象 56
4.1 前言 56
4.2 實驗方法 57
4.2.1 實驗藥品 58
4.3 結果與討論 58
4.4 結論 70
第五章 界面活性劑在PTFE微粒表面之吸附現象 71
5.1 前言 71
5.2 實驗方法 72
5.2.1 實驗藥品 72
5.2.2 吸附實驗 73
5.2.3 界面電位量測 74
5.3 結果與討論 74
5.4 結論 84
第六章 操作條件對NI-P/PTFE複合鍍組成之影響 85
6.1 前言 85
6.2 實驗部份 85
6.2.1 Ni-P/PTFE複合鍍層之製備 86
6.2.2 鍍層中微粒含量之測定 86
6.2.3 吸附實驗 87
6.3 結果與討論 87
6.3.1 PTFE濃度固定在4.5 g/L,改變界面活性劑FC之濃度(Cp=定值) 87
6.3.2 界面活性劑FC與PTFE微粒用量比例固定,改變鍍液中PTFE濃度 94
6.4 結論 100
第七章 Ni-P/PTFE複合鍍層於水潤滑環境之磨耗性能 101
7.1 前言 101
7.2 實驗部份 103
7.2.1 材料 103
7.2.2 接觸角量測 103
7.2.3 磨耗測試 104
7.3 結果與討論 108
7.3.1 潤濕性與摩擦係數及磨耗 108
7.3.2 荷重效應與摩擦係數及磨耗 119
7.4 結論 124
第八章 總結論與建議 125
參考文獻 130
作者簡介 137
主要著作目錄 138
Adamson, A. W., Physical Chemistry of Surfaces, Wiley, New York, 3rd Ed. (1976).
Andersson, P., and P. Lintula, Tribology International, 27(5), 315 (1994).
AssunÇão, N.A., M.J. de Giz, G. Tremiliosi-Filho, E.R. Gonzalez, J. Electrochem. Soc. 144 2794 (1997).
Bartlett, P.K.N., Industrial training report AKZO. Arnhem. 10 (1980).
Bee, H.E., R.H. Ottewill and D.G. Rance, in Adsorption form Solution, R. H. Ottewill, C. H. Rochester, A. L. Smith, Eds, Academic: London, (1983).
Bindra, P. and J. Tweedie, J. Electrochem. Soc., 130, 1112 (1983).
Biswas, S. K., and V. Kalyani, Wear, 158(1-2), 193 (1992).
Bone, J.S., S. Oilman, L. W. Niedrach and M.D. Read, Proc. 15th Annual Power Sources Conf., Atlantic City, NJ, 47 (1961).
Borruto, A., G. Crivellone and F. Marani, Wear, 222(1), 57 (1998).
Braithwaite, E.R., Solid Lubricants and Surfaces, Pergamon Press, 179 (1964)
Brnner, A., and G.E. Riddle, Proc. Amer. Electroplaters Soc., 33, 23 (1946).
Buelens, C., J. Fransaer, C., J.P. Cellis, and J.R. Roos, Bull. Electrochem., 8, 371 (1992).
Cavallotti, P. and G. Salvago, Electrochim Metallorg, 3, 329 (1970).
Celis, J.P., J.R. Roos, and C. Buelens, J. Electrochem. Soc., 134, 1402 (1987).
Clauss, Francis J., Solid Lubricants and Self-lubricating Solids, Academic Press, 195 (1972)
Clint, J.H., Surfactant Aggregation, Blackie & Son: London, (1992).
Cooper, G.A., and J. Berline., Wear, 123(1), 33, (1988).
Desai, T.R., and S. G. Dixit, Adsorption Science & Technology, 15(5), 391 (1997).
Desai, Y.R., and S. G. Dixit, J. Colloid Interface Sci., 179, 544 (1996).
Ebdon, P.R., Ins. J. Mater. Prod. Technol., 1(2) 290 (1986).
Ebdon, P.R., Product Finishing, 39(11), 8 (1986).
Ebdon, P.R., Plat. Surf. Finish., 75(9), 65 (1988).
Esumi, K., H. Otsuka, and K. Meguro, J. Colloid Interface Sci., 142(2), 582 (1991).
Esumi, K., H. Otsuka, and K. Meguro, Langmuir, 7, 2313 (1991).
Esumi, K., Y. Tokui, T. Nagahama, and K. Meguro, J. Colloid Interface Sci., 146(2), 313 (1991).
Fransear, J., J.P. Celis, , and J.R. Roos, J. Electrochem. Soc., 139, 413 (1992).
Gao, Y., C. Yue, S. Lu, W. Gu, and J. Gu, J. Colloid Interface Sci., 100, 581 (1984).
Ger, M.D., W.H. Hwu, Y.W. Yang, and K.H. Chu, J. Chin. Colloid & Interface Soc., 21(4), 151 (1998).
Gong, Deil., Q. Xue., and H. Wang., Wear, 134, n2, 283, (1989).
Gorbunova, K.M., M.V. Ivanov and V.P. Moiseev, J. Electrochem. Soc., 120, 613 (1973).
Gouda, V.K., S. Shawki and H. El-Tawil, Metal Finishing, 70(5), 77 (1972).
Grosjean, A., M. Rezrazi, P. Bercot, and M. Tachez, Metal Finishing, 96(4), 14 (1998).
Greco, V.P. and W. Baldauf, Plating, 55, 250 (1968).
Gulielmi, M., J. Electrochem. Soc., 119, 1009 (1972).
Hadley, J.S., and L.E. Harland, Metal Finishing, 85( ), 51 (1987).
Heidrich, H.J. and L. Muller, Electrochim. Acta, 35, 1089 (1990).
Henry, J., Metal Finishing, 88(10), 15 (1990).
Henry, J., Corrosion′93, NACE Annual Conference and Corrosion Show, 40 (1993).
Hersch, P., Transactions of the Institute of Metal Finishing, 33, 417 (1955).
Hovestad, A., and L.J.J. Janssen, J. Appl. Electrochem. 25, 519 (1995).
Hovestad, A., R. J.C.H. L. Hessen, and L.J.J. Janssen, J. Appl. Electrochem. 29, 331 (1999).
Hu, X., C. Dai, J. Li, and D. Wang, Plating and Surface Finishing, 3, 51 (1997).
Huang, L., C. Maltesh, and P. Somasundaran, J. Colloid Interface Sci., 177, 222 (1996).
Hwang, B.J., and C.S. Hwang, J. Electrochem. Soc., 140, 979 (1993).
Hwang, B.J., and S.H. Lin, J. Electrochem. Soc., 142, 3749 (1995).
Hwang, B.J., and Y.T. Shih, J. Chin. Inst. Engrs., 25(6) 349 (1994).
Iwakura, C., N. Furukawa and M. Tanaka, Electrochim. Acta, 37 757 (1992).
Kleinke, M.U., M.A.B. Moraes and O. Teschke, J. Electrochem. Soc. 133, 1815 (1986).
Kunugi, Y., T. Fuchigami, and T. Nonaka, Chem. Lett. 1467 (1989).
Kunugi, Y., T. Fuchigami, T. Nonaka, and S. Matsumura J. electroanal. Chem. 28, 7385 (1990).
Kunugi, Y., R. Kumada, T. Nonaka, Y. Chong, and N. Watanabe, J. electroanal. Chem., 313, 215 (1991).
Kunugi, Y., T. Nonaka, Y. Chong, and N. Watanabe, Electrochim. Acta, 37, 353 (1992).
Lee, E.M. and L.K. Koopl, J. Colloid Interface Sci., 177, 478 (1996).
Lei, X.R. and Y.J. Li, Journal of Materials Engineering, 11, 12 (1997).
Lukes, R.M., Plating, 51, 969 (1964).
Matsuda, H., Y. Kiyono, M. Nishira, and O. Takano, Transactions of the Institute of Metal Finishing, 72(2), 55 (1994).
Matsuda, H., M. Nishira, Y. Kiyono, and D. Takano, Transactions of the Institute of Metal Finishing, 73(1), 16 (1995).
Moore, B., and N. Messenger, World Pumps, 398, 32 (1998).
Munson, Bruce R., Donald F. Young, and Theodore H. Okiishi, Fundamentals of Fluid Mechanics, John Wiley & sons, Inc. 3rd ed., 17 (1998).
Musiani, M., Electrochim. Acta, 45, 3397 (2000).
Niedrach, L.W. and H. L. Alford, J. Electrochem. Soc. 112, 117 (1965).
Niedrach, L.W., and Belgain, Pat. No 617, 375 (1962).
Nishira, M., and O. Takano, J. Surface Finish Soc. Japan, 42(8), 839 (1991).
Nishira, M., and O. Takano, Plating and Surface Finishing, 1, 48 (1994).
Olesky, M., A. Budniok, J. Niedbala and P. Matyja, Electrochim. Acta 39 2439 (1994).
Ottewill, R.H., C.H. Rochester, and A. L. Smith, Adsorption from Solution, Academic: London, (1983).
Parfitt, G.D., and C.H. Rochesfer, Adsorption from Solution at the Solid/Liquid Interface, Academic: London, (1983).
Paunovic, M., Plating, 55, 1661 (1968).
Rabinowicz, E., Friction and Wear of Materials, John Wiley & sons: New York, 2nd ed., 92 (1995).
Riedel, W., Electroless Nickel Plating, Finishing Publications Ltd. (1991).
Rosen, M.J., Surfactants and Interfacial Phenomena, 2nd Ed, John Wiley Sons: New York (1989).
Ross, J.R., J.P. Cellis, J. Fransaer and C. Buelens, J. Metals, 42, 60 (1990).
Ross, S., and I.D. Morrison, Colloidal Systems and Interfaces, John Wiley & Sons: New York (1988).
Sadakow, G.A. and K.M. Gorbunowa, Electrochimija, 16, 230 (1980).
Scamehorn, J.F., R.S. Schechter, and W. H. Wade, J. Colloid Interface Sci., 85, 494 (1982).
Shieh, D.T. and B.J. Hwang, J. Chin. 1nst. Chem. Engrs., 28(1), 9 (1997).
Shrestha, Nabeen K., Miwa Ichiro, and Saji Tetsuo, J. Electrochem. Soc., 148, C106 (2001).
Somasundaran, P., E. Fu, and Q. Xu, Langmuir, 8, 1065 (1992).
Spalvins, T., Thin Solid Films, 96, 17, (1982).
Sudarshan, T.S. and D.G. Bhat, “Surface Modification Technologies”, The Metallurgical Society, 169(1988).
Tadros, T.F., Solid-Liquid Dispersions, Academic: London, (1987).
Tang, J., L. Huang, S. Yao and S. Zhou, Plating and Surface Finishing, 85(8), 84 (1998).
Teschke, O., and F. Galembeck, J. Electrochem. Soc. 131, 1095 (1984).
Tulsi, S.S., Trans. Inst. Met. Finish., 61(3) 147 (1983).
Van Der Meerakker, J.E.A.M., J. Appl. Electrochem. 11, 395 (1981).
Vanjara, A.K., and S. G. Dixit, J. Colloid Interface Sci., 177, 359 (1996).
Wang, H., W. Xia and Y. Jin, Wear, 195(1-2), 47 (1996).
Watson, Sandra W., J. Electrochem. Soc. 140, 2235 (1993).
Wen, T., C.C.C. Hu and Y.J. Li, J. Electrochem. Soc., 140, 2554 (1993).
Yang, D.and C. Jiang, Plating and Surface Finishing, 85(1), 110 (1998).
Yang, E.L., T.P. Hirvoner, and R.O. Tonvanen, Wear, 146, n.2, Jun, 367 (1991).
Yang, Q.F., J. Ding, and Z.Q. Shen, Dalian Ligong Daxue Xuebao, 39(4) 504 (1999).
Yao, J., and G. Strauss, Langmuir, 7, 2353 (1991).
Yoda, K., K. Tamori, K. Esumi, and K. Meguro, J. Colloid Interface Sci., 131(1), 282 (1989).
Yu, L.G., and X.S. Zhang, Thin Solid Films, 245, 98 (1994).
Zahavi, J. and J. Hazen, Plating and Surface Finishing, 2, 37 (1983).
Zhou, X. and W.Y. Du, Materials Protection, 30(3), 1 (1997).
Zhung, Y.Z., Y.Y. Wu, K.N. Sun and M. Yao, J. Mater. Sci. Lett., 17, 119 (1998).
白曉軍,電鍍與環保,13(4) 8-10 (1993).
何正山、胡信國,材料保護,28(1) 16-19 (1995).
張有義、郭蘭生編譯,“膠體及界面化學入門”,高立圖書出版社 (1997)
趙國鵬、于欣彿、王逢尹,表面技術雜誌,130, 76 (1991)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
系統版面圖檔 系統版面圖檔