(3.238.7.202) 您好!臺灣時間:2021/02/25 10:26
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:陳雅慧
研究生(外文):Ya-Hui Chen
論文名稱:使用試題反應理論建構個人化線上學習系統
論文名稱(外文):Personalized E-Learning by Using Item Response Theory
指導教授:李漢銘李漢銘引用關係
指導教授(外文):Hahn-Ming Lee
學位類別:碩士
校院名稱:國立臺灣科技大學
系所名稱:資訊工程系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:112
中文關鍵詞:個人化建議系統線上學習試題反應理論電腦適性化測驗
外文關鍵詞:Computerized Adaptive Test (CAT)Item Response Theory (IRT)Personalized recommend systemE-LearningWeb-based Learning system
相關次數:
  • 被引用被引用:2
  • 點閱點閱:287
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:2
個人化的服務不再只是加值的服務,而是一個必須具備的基本功能,尤其是在線上學習系統上。目前的推薦系統在推薦課程給學習者時,大部分都只考慮到學習者的興趣或是偏好,往往都忽略了學習者的能力也是一項很重要的考量因素。在網路上的學習,由於超連結的網頁結構,造成使用者容易迷失在其中,而認知超載,資訊超載,缺乏適性機制和課程難度的調整都是主要的問題。所以本論文在建構一個人化的線上學習系統,能在學習者的學習過程中,動態地依據學習者的回應來評估學習者的能力,並將適合學習者能力之教材呈現給學習者來試圖解決上述問題,本研究利用試題反應理論達到上述的功能,並探討其適用的可行性;再者,我們也提供合作投票的方式來達到課程困難度的調整,用此方法,可以降低專家定義的難易度不符合一般大眾的認知差距,也降低可能因為少數人亂答而影響到課程困難度的正確性,以確保課程困難度的合理性及正確性。實驗顯示,利用試題反應理論,可以得到個人化學習的效果,以達成因材施教及循序學習的目的。
Personalized service is an important issue on the web, especially for web-based learning. Generally speaking, most personalized systems do not consider users’ abilities as an important factor to implement personalized mechanism and they only consider users’ preferences, interests, and browsing behaviors. Besides, too many link structures bring a lot of burdens to users. Hence, in web-based learning, disorientation (losing in hyperspace), cognitive overload, lack of adaptive mechanism, the information overload problem, and the adaptation of course materials difficulties are main research issues. Thus, we consider both the difficulties of course materials and users’ abilities to provide personalized learning. This thesis adopts Item Response Theory (IRT) to estimate the users’ abilities and rank appropriate course materials to users. We also propose the collaborative voting approach to the difficulties adjustment of the course materials in order to relieve the above-mentioned problems. Furthermore, the difficulties of the course materials and users’ abilities can be adjusted according to users’ explicit feedback to achieve the goal of the personalized course materials. The precision of the difficulties of course materials can be increased with the collaborative voting approach. Experimental results show that IRT applied to web learning can achieve personalized learning, and assist users to learn effectively and efficiently.
Contents
摘要 I
ABSTRACT II
誌謝 III
ACKNOWLEDGEMENTS IV
CONTENTS V
LIST OF FIGURES VIII
LIST OF TABLES X
CHAPTER 1 INTRODUCTION 1
1.1 MOTIVATION 1
1.2 CHALLENGES OF WEB-BASED LEARNING 4
1.3 OUR GOALS AND DESIGN 6
1.4 OUTLINE OF THE THESIS 6
CHAPTER 2 BACKGROUND 8
2.1 APPLICATIONS OF PERSONALIZATION 8
2.1.1 Content-Based Approach 8
2.1.2 Collaborative Approach 10
2.1.3 Hybrid Approach 11
2.2 COMPUTERIZED ADAPTIVE TESTING 12
2.2.1 Overview 12
2.2.2 Structure 14
2.3 ITEM RESPONSE THEORY 17
2.3.1 Item Characteristic Curve 18
2.3.2 The Assumptions of IRT 19
2.3.3 Item Response Model 21
2.3.4 User’s Ability Estimation 24
2.3.5 The Methods of Item Selection 27
2.4 TECHNOLOGIES OF WEB-BASED EDUCATION SYSTEMS 30
2.4.1 Intelligent Tutoring Systems 30
2.4.2 Adaptive Hypermedia Systems 31
CHAPTER 3: PERSONALIZED COURSE RECOMMENDATION SYSTEM 34
3.1 SYSTEM ARCHITECTURE 34
3.2 INTERFACE AGENT 40
3.3 IRT AGENT 41
3.3.1 Feedback Agent 42
3.3.2 Courses Recommendation Agent 49
3.4 THE PROPERTY OF OUR PROPOSED COURSE RECOMMENDATION SYSTEM 51
CHAPTER 4 EXPERIMENTS AND ANALYSIS 52
4.1 EXPERIMENTAL ENVIRONMENT 52
4.2 EXPERIMENTAL RESULTS AND ANALYSIS 62
4.2.1 The Difficulties Adjustment of Course Materials 62
4.2.2 The Adaptation of Users’ Abilities 66
4.3 SATISFACTION EVALUATION 80
4.4 EXPERIMENTAL CONCLUSION 85
CHAPTER 5 CONCLUSION 86
5.1 DISCUSSION 86
5.2 CONCLUSION 89
5.3 FUTURE WORK 90
REFERENCES 93
VITA 103
List of Figures
FIGURE 2.1. GENERAL STRUCTURE OF CAT. 15
FIGURE 2.2. FLOWCHART OF AN ADAPTIVE TEST. 16
FIGURE 2.3. THE ITEM CHARACTERISTIC CURVE. 19
FIGURE 2.4. THE DEVELOPMENT PROCESS OF RASCH MODEL. 22
FIGURE 2.5. THE THREE KINDS OF TYPES ABOUT IRT MODEL. 24
FIGURE 3.1. PEL-IRT ARCHITECTURE. 36
FIGURE 3.2. DATABASE SCHEMA OF PEL-IRT. 38
FIGURE 3.3. THE PROCESS OF PEL-IRT. 40
FIGURE 3.4. OPERATION FLOWCHART OF FEEDBACK AGENT. 43
FIGURE 3.5. OPERATION FLOWCHART OF COURSES RECOMMENDATION AGENT. 49
FIGURE 4.1. THE FRONT-PAGE OF THE PEL-IRT SYSTEM. 52
FIGURE 4.2. BROWSING THE COURSE MATERIALS WITHOUT LOGIN. 53
FIGURE 4.3. LOGIN PROCEDURE FOR PERSONALIZED RECOMMENDATION. 53
FIGURE 4.4. AN EXAMPLE OF RESPONSE TO USER’S QUERY IN A UNIT OF A CATEGORY. 55
FIGURE 4.5. AN EXAMPLE AFTER USER CLICKS ONE COURSE MATERIAL. 56
FIGURE 4.6. RECOMMENDATION LIST AFTER USER RESPONDS THE QUESTIONNAIRE. 57
FIGURE 4.7. ONE COURSE MATERIAL SELECTED FROM THE RECOMMENDATION LIST. 58
FIGURE 4.8. THE SECOND RECOMMENDATION LIST. 58
FIGURE 4.9. COMPARISON BETWEEN THE RECOMMENDATION LISTS AT FIRST TIME AND SECOND TIME. 60
FIGURE 4.10. COMPARISON BETWEEN THE RECOMMENDED COURSE MATERIALS LISTS OF THREE TYPES OF ABILITIES. 61
FIGURE 4.11. THE TUNED CURVES THE DIFFICULTIES OF COURSE MATERIALS. 66
FIGURE 4.12. THE ADAPTATION OF USERS’ ABILITIES. 67
FIGURE 4.14. THE RELATIONSHIP BETWEEN THE RANGE OF THE ADJUSTMENT OF USER A’S ABILITY AND THE DIFFICULTIES OF CLICKED COURSE MATERIALS. 70
FIGURE 4.15. THE RELATIONSHIP BETWEEN USER A’S ABILITY AND THE DIFFICULTIES OF RECOMMENDED COURSE MATERIALS. 71
FIGURE 4.16. THE RELATIONSHIP BETWEEN THE RANGE OF ADJUSTED USER A’S ABILITY AND THE DIFFERENCE OF DIFFICULTIES OF RECOMMENDED COURSE MATERIALS. 72
FIGURE 4.17. THE RELATIONSHIP BETWEEN THE RANGE OF ADJUSTED USER A’S ABILITY AND THE DIFFERENCE OF DIFFICULTIES OF RECOMMENDED AND CLICKED COURSE MATERIALS. 72
FIGURE 4.18. THE RELATIONSHIP BETWEEN THE ADJUSTMENT OF THE USER B’S ABILITY AND THE DIFFICULTIES OF CLICKED COURSE MATERIALS. 77
FIGURE 4.19. THE RELATIONSHIP BETWEEN THE RANGE OF THE ADJUSTMENT OF USER B’S ABILITY AND THE DIFFICULTIES OF CLICKED COURSE MATERIALS. 77
FIGURE 4.20. THE RELATIONSHIP BETWEEN USER B’S ABILITY AND THE DIFFICULTIES OF RECOMMENDED COURSE MATERIALS. 78
FIGURE 4.21. THE RELATIONSHIP BETWEEN THE RANGE OF ADJUSTED USER B’S ABILITY AND THE DIFFERENCES OF DIFFICULTIES OF RECOMMENDED COURSE MATERIALS. 79
FIGURE 4.22. THE RELATIONSHIP BETWEEN THE RANGE OF ADJUSTED USER B’S ABILITY AND THE DIFFERENCES OF DIFFICULTIES OF RECOMMENDED AND CLICKED COURSE MATERIALS. 79
List of Tables
TABLE 4.1 DESCRIPTION OF FIELD NAMES OF DIFFICULTY ADJUSTMENT 63
TABLE 4.2 THE DIFFICULTY ADJUSTMENT OF COURSE A 64
TABLE 4.3 THE DIFFICULTY ADJUSTMENT OF COURSE B 64
TABLE 4.4 THE DIFFICULTY ADJUSTMENT OF COURSE C 65
TABLE 4.5 DESCRIPTION OF FIELD NAMES OF USER’S ABILITY ADJUSTMENT 68
TABLE 4.6 LEARNING PROCESS OF USER A 69
TABLE 4.7 LEARNING PROCESS OF USER B 74
TABLE 4.8 THE MAPPING OF COURSE MATERIALS 75
TABLE 4.8 THE MAPPING OF COURSE MATERIALS (CONTINUE) 76
TABLE 4.9 THE USER SATISFACTION ABOUT RECOMMENDED COURSE MATERIALS DURING LEARNING PROCESS 82
TABLE 4.10 THE USER SATISFACTION AFTER LEARNING 84
[1] Agrawal, R.; Imielinski, T.; Swami, A., “Mining Association Rules Between Sets of Items in Large Databases,” In Proceedings of the ACM SIGMOD Conference on Management of Data (Washington D.C.), pp. 207-216, 1993.
[2] Agrawal, R.; Srikant, R., “Fast Algorithm for Mining Association Rules,” In Proceedings of the 20th VLDB Conference (Santiago, Chile), pp. 478-499, 1994.
[3] Arasu, A.; Cho, J.; Garcia-Molina, H.; Paepcke, A.; Raghavan, S., “Searching the Web,” ACM Transactions on Internet Technology, Vol. 1, Issue: 1, pp. 97-101, 2001.
[4] Armstrong, R.; Freitag, D.; Joachims, T.; Mitchell, T., “Webwatcher: A Learning Apprentice for the World Wide Web,” AAAI Spring Symposium on Information Gathering from Heterogeneous Distributed Environments, pp. 6-12, March 1995.
[5] Ayersman, D. J.; Minden, A. V., “Individual Differences, Computers and Instruction,” Computers in Human Behavior, Vol. 11, No. 3/4, pp. 371-390, 1995,.
[6] Baker, F. B., “The Basics of Item Response Theory,” ERIC Clearinghouse on Assessment and Evaluation, University of Maryland, College Park, MD. Avaialable at: http://ericae.net/irt/baker.
[7] Balabanovic, M.; Shoham, Y., “Learning Information Retrieval Agents: Experiments with Automated Web Browsing,” AAAI 1995 Spring Symposium Information Gathering from Heterogeneous, Distributed Environments, AAAI Press, Menlo Park, Calif., pp. 13-18, 1995.
[8] Balabanovic, M.; Shoham Y., “Fab: Content-based, Collaborative Recommendation,” Communications of the ACM, Vol. 40, No. 3, pp. 66-72, March 1997.
[9] Barker, K., “E-learning in Three Step,.” School business affairs, 2002.
Avaliable at http://www.asbointl.org.
[10] Basu, C.; Hirsh, H.; Cohen, W., “Recommendation as Classification: Using Social and Content-based Information in Recommendation,” Proceedings of National Conference of Artificial Intelligence (AAAI-98), Madison, WI, AAAI Press, Menlo Park, CA, pp. 714-720, 1998.
[11] Berghel, H., “Cyberspace 2000: Dealing with Information overload,” Communications of the ACM, Vol. 40, No. 2, pp.19-24, Feb. 1997.
[12] Birnbaum, A., Some Latent Trait Models and Their Use in Inferring an Examinee’s Ability, In F. M. Load and M. R. Novick, Statistical theories of mental test scores (chapters 17-20), Reading, MA: Addison-Wesley, 1968.
[13] Bollacker, K. D.; Lawrence, S.; Giles, C. L., “Citeseer: An Autonomous Web Agent for Automatic Retrieval and Identification of Interesting Publications,” Proceedings of the 2nd International Conference on Autonomous Agents, pp. 116-120, 1998.
[14] Bollacker, K. D.; Lawrence, S.; Giles, C. L., “Discovering Relevant Scientific Literature on the Web,” IEEE Intelligent Systems, Vol. 15, No. 2, pp. 42-47, March/April 2000.
[15] Borchers, A.; Herlocker, J.; Konstanand, J.; Riedl, J., “Ganging Up on Information Overload,” Computer, Vol. 31, Issue: 4, pp. 106-108, Apr. 1998.
[16] Buyske, S. G., “Optimal Design for Item Calibration in Computerized Adaptive Testing: the 2pl Case,” In New Developments and Applications in Experimental Design., IMS monograph, 1998.
Also available at http://www.rci.rutgers.edu/~buyske/2pl.pdf.
[17] Brin, S.; Page, L., “The PageRank Citation Ranking: Bringing Order to the Web,” In Proceedings of ASIS’98, pp. 161-172, 1998.
[18] Brusilovsky, P., “Adaptive and Intelligent Technologies for Web-based Education,” In Rollinger, C.; Peylo, C. (eds.), Special Issue on Intelligent Systems and Teleteaching, Künstliche Intelligenz, Vol. 4, pp. 19-25, 1999.
[19] Brusilovsky, P., “Intelligent Tutoring Systems for World-Wide Web,” In: Holzapfel, R. (ed.) Proc. of Third International WWW Conference (Posters), Darmstadt, Fraunhofer Institute for Computer Graphics, pp. 42-45, 1995.
[20] Brusilovsky, P.; Schwarz, E.; Weber, G., “ELM-ART: An Intelligent Tutoring System on World Wide Web,” In: Frasson, C.; Gauthier, G.; Lesgold, A.; (eds.) Intelligent Tutoring Systems, Lecture Notes in Computer Science, Vol. 1086, Springer Verlag, Berlin, pp. 261-269, 1996.
[21] Brusilovsky, P., “Methods and Techniques of Adaptive Hypermedia,” User Modeling and User Adapted Interaction, Special Issue on adaptive hypertext and hypermedia, Vol. 6, No. 2-3, pp. 87-129, 1996.
[22] Brusilovsky, P., “Adaptive Hypermedia,” User Modeling and User Adapted Interaction ΙΙ, pp. 87-110, 2001.
[23] Burns, H. L.; Capps, C. G., “ Foundations of Intelligent Tutoring Systems: An Introduction”. In: Polson, M. C. and Richardson, J. J. (eds.): Foundations of intelligent tutoring systems. Lawrence Erlbaum Associates, Hillsdale, pp. 1-19, 1998.
[24] Calvi, C., “Navigation and Disorientation: A Case Study,” Journal of Educational Multimedia and hypermedia, Vol. 6, No. 3/4, pp. 305-320, 1997.
[25] Chen, C. M., Web Mining Using Neural Networks with Grey Prediction Learning Ability, Doctoral dissertation, Department of Electronic Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan, 2002.
[26] Chidlovskii, B.; Glance, N.; Grasso, A., “Collaborative Re-Ranking of Search Results,” In Proceedings of AAAI-2000 Workshop on Artificial Intelligence for Web Search, Austin, Texas, pp. 18-22, 2000.
[27] Conklin, J; “Hypertext: An Introduction and Survey,” Computer, Vol. 20, No. 9, pp. 17- 41, 1987.
[28] Dias, P.; Sousa, P., “Understanding Navigation and Disorientation in Hypermedia Learning Environments,” Journal of Educational Multimedia and Hypermedia, Vol. 6, No. 2, pp. 173-185, 1997.
[29] Duda, R.; Hart, P., Pattern Classification and Scene Analysis, John Wiley and Sons, New York, 1973.
[30] Fu, X.; Budzik, J.; Hammond, J. K., “Mining Navigation History for Recommendation,” Proceedings of the 2000 International Conference on Intelligent User Interfaces, pp. 106-112, 2000.
[31] Hambleton, R. K., Item Response Theory: Principles and Applications, Boston, Kluwer-Nijhoff Publishe, 1985.
[32] Hambleton, R. K.; Swaminathan, H.; Rogers, H. J., Fundamentals of Item Respnse Theory, Newbury Park: Sage, 1991.
[33] Han, J.; Kamber M., Data Mining: Concept and Techniques, Morgan Kaufmann Publishers, 2000.
[34] Horward, W., Computerized Adaptive Testing: A Primer, Hillsdale, New Jersey: Lawerence Erwrence Erlbaum Associates, 1990.
[35] Hulin, C. L.; Drasgow, F.; Parsons, C. K., Item Response Theory: Application to Psychological Measurement, Homewood, IL: Dow Jones Irwin, 1983.
[36] Hsu, T. C.; Sadock, S. F., Computer-assisted Test Construction: A State of Art, TME report 88. Princeton, New Jersey, Eric on Test, Measurement, and Evaluation, Educational Testing Service, 1985.
[37] Jiang, M. F.; Tseng, S. S.; Lin, Y. T., “Collaborative Rating System for Web Page Labeling,” World Conference of the WWW and Internet, Honolulu, Hawaii, USA, vol. 1, pp. 569-574, 1999, Available at
http://www.informatik.uni-trier.de/~ley/db/conf/webnet/JiangTL99 .
[38] Ju, C. C., CAT Based on Fuzzy Theory and IRT, Master’s thesis, Department of Computer Science and Information Engineering, National Chung Cheng University, Taiwan, 1999.
[39] Kao, T. T., Personalization Courseware Navigation Using Grey Ranking Analysis, Master’s thesis, Department of Electronic Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan, 2001.
[40] Khan, B. H., Web Based Instruction, Englewood Cliffs, New Jersey: Educational Technology Publications, 1997.
[41] Kleinberg, J., “Authoritative Sources in a Hyperlinked Environment,” In Proceedings of 9th ACM-SIAM Symposium on Discrete Algorithms, pp. 668-679, 1998.
[42] Kobayashi, M.; Takeda, K., “Information Retrieval on the Web,” ACM Computing Surveys, Vol. 32, No. 2, pp. 144-173, 2000.
[43] Konstan, J. A.; Miller, B. N.; Maltz, D.; Herlocker, J. L.; Gordon, L. R.; Riedl, J., “GroupLens: Applying Collaborative Filtering to Usenet News,” Communications of ACM, Vol. 40, No. 3, pp. 77-87, March 1997.
[44] Kreitzberg, C. B.; Jones, D. H., An Empirical Study of the Broad Range Tailored Test of Verbal Ability, Research Report, RR-80-5, Princeton, New Jersey: Educational Testing Service, 1980.
[45] Lai, H. C.; Yang, T. C., “A System Architecture of Intelligent-Guided Browsing on the Web,” Proceedings of the 31th Hawaii International Conference on System Science, Vol. 4, pp.423-432, 1998.
[46] Lawless, K. A.; Kulikowich, J. M., “Domain Knowledge, Interest and Hypertext Navigation: A Study of Individual Differences,” Journal of Educational Multimedia and Hypermedia, Vol. 7, No. 1, pp. 51-69, 1998.
[47] Lawrence, S.; Giles, C. L., “Context and Page Analysis for Improved Web Search,” IEEE Internet Computing, Vol. 2, No. 4, pp. 38-46, July/August 1998.
[48] Lawrence, S.; Giles, C. L., “Searching the World Wide Web,” Science, Vol. 280, No. 5360, pp. 98-100, 1998.
[49] Lawrence, S.; Giles, C. L.; Bollacker, K., “Digital Libraries and Autonomous Citation Indexing,” Computer, Vol. 32, No. 6, pp. 67-71, June 1999.
[50] Lawrence, S.; Giles, C. L., “Searching the Web: General and Scientific Information Access,” IEEE Communications, Vol. 37, pp. 116-122, 1999.
[51] Lee, C. H.; Kim, Y. H.; Rhee, P. K., “Web Personalization Expert with Combining Collaborative Filtering and Association Rule Mining Technique,“ Expert Systems with Applications, Vol. 21, Issue: 3, October, pp. 131-137, 2001.
[52] Likert, R., A Technique for the Measurement of Attitudes, New York:Archives of Psychology, 1932.
[53] Lin, C. H.; Gayle, D., “Effects of Linking Structure and Cognitive Style on Students'' Performance and Attitude in a Computer-based Hypertext Environment,” Journal of Educational Computing Research, Vol. 15, No. 4, pp. 317-329, 1996.
[54] Lin, Y. T.; Tseng, S. S.; Jiang, M. F., “Voting Based Collaborative Platform for Internet Content Selection,” The 4th Global Chinese Conference on Computers in Education Proceeding, Singapore, 2000.
[55] Lord, F. M., Application of Item Response Theory to Practical Testing Problems, Hillsdale, New Jersey: Lawerence Erwrence Erlbaum Associates, 1980.
[56] Maes, P., “Experience with Personalization on Yahoo,” Communications of ACM, Vol. 43, No. 8, pp. 35-39, August 2000.
[57] Mallak, L. A., “Challenges in Implementing E-learning,“ International Conference on Management of Engineering and Technology, Vol. 1, pp. 298-299, 2001.
[58] Mladenic, D. J., “Text-Learning and Related Intelligent Agents: A Survey,” IEEE Intelligent Systems, Vol. 14, No. 4, pp. 44-54, July/August 1999.
[59] Mladenic, D., “Personal WebWatcher: Design and Implementation,” Technical Report: IJS-DP-7472, Deptartment of Computer Science, J. Stefan Institute, 1996. Avaliable at
Avaiable at: http://www-ai.ijs.si/DunjaMladenic/home.html.
[60] Mladenic, D., “Machine Learning Used by Personal WebWatcher,” Proceedings of ACAI-99 Workshop on Machine Learning and Intelligent Agents, Chania, Crete, Vol. 5, No.16, July 1999.
Available at http://www-ai.ijs.si/DunjaMladenic/pww.html.
[61] Mobasher, B.; Cooley, R.; Srivastava, J., “Automatic Personalization Based on Web Usage Mining,” Communications of the ACM, Vol. 43, No. 8, pp. 142-151, August 2000.
[62] Mobasher, B.; Cooley, R.; Srivastava, J., “Creating Adaptive Web Sites through Usage-based Clustering of URLs,” Proceedings of Workshop on Knowledge and Data Engineering Exchange (KDEX ''99), pp. 19-25, 1999.
[63] Mooney, J. R.; Roy, L., “Content-based Book Recommending Using Learning for Text Categorization,” Proceedings of the 5th ACM Conference on ACM 2000 Digital Libraries, pp. 195-204, 2000.
[64] Nakabayashi, K.; Koike, Y.; Maruyama, M.; Touhei, H.; Ishiuchi, S.; Fukuhara, Y., “An Intelligent Tutoring System on World-Wide Web: Towards an Integrated Learning Environment on a Distributed Hypermedia,” In: Maurer, H. (ed.) Processding of ED-MEDIA''95-World conference on educational multimedia and hypermedia, Graz, ustria, AACE, pp. 488-493, 1995.
[65] Okazaki, Y.; Watanabe, K.; Kondo, H., “An Implementation of an Intelligent Tutoring System (ITS) on the World Wide Web (WWW),” Educational Technology Research, Vol. 19, No. 1, pp. 35-44, 1996.
[66] Owen, R. J., “A Bayesian Sequential Procedure for Quantal Response in the Context of Adaptive Mental Testing,” Journal of the American Statistical Association, Vol. 70, No. 350, pp. 351-356, 1975.
[67] Owen, R. J., “A Bayesian Approach to Tailored Testing,” Research Bulletin, Princeton, New Jersey: Educational Testing Service, pp. 69-92, 1969.
[68] Pazzani, M.; Billsus, D., “Learning and Revising User Profiles: The Identification of Interesting Web Sites,” Machine Learning, Kluwer Academic Publishers, Volume 27, No. 3, pp. 313-331, 1997.
[69] Pazzani, M. J.; Muramatsu, J.; Billsus, D., “Syskill & Webert: Identifying Interesting Web Sites,” Proceedings of the 13th National Conference on Artificial Intelligence (AAAI-96), pp. 54-61, 1996.
[70] Perkowitz, M.; Etzioni, O., “Adaptive Web sites,” Communications of ACM, Vol. 43, No. 8, pp. 152-158, 2000.
[71] Perkowitz, M.; Etzioni, O., “Towards Adaptive Web Sites: Conceptual Framework and Case Study”, Artificial Intelligence, Vol. 118, No. 1-2, pp. 245-275, 2000.
[72] Persin, M., “Document Filtering for Fast Ranking,” ACM SIGIR Conference, pp. 339-349, 1984.
[73] Pretschner, A.; Gauch, S., “Ontology Based Personalized Search,” Proceedings of 11th IEEE International Conference on Tools with Artificial Intelligence, pp. 391-398, 1999.
[74] Quinlan, J. R., Programs for Machine Learning, Morgan Kaufmann, 1993.
[75] Resnick, P.; Iacovou, N.; Suchak, M.; Bergstrom, P.; Riedl, J., “GroupLens: An Open Architecture for Collaborative Filtering of Netnews,” Proceedings of the ACM Conference on Computer Supported Cooperative Work, pp. 175-186, 1994.
[76] Rucker, J., Polanco, M. J., “Siteseer: Personalized Navigation for the Web,” Communications of ACM, Vol. 40, No. 3, pp. 73-76, March 1997.
[77] Ruder, L. M., “An On-line, Interactive, Computer Adaptive Testing Tutorial,” 1998. Avaliable at http://ericae.net/scripts/cat/catdemo.htm.
[78] Salton, G., Automatic Text Processing: The Transformation, Analysis, and Retrieval of Information by Computer, Addison Wesley, 1989.
[79] Salton, G.,; Wong, A.; Yang, C. S., “A Vector Space Model for Automatic Indexing,” Communications of the ACM, Vol. 18, No. 11, pp. 613-620, 1975.
[80] Shardanand, U.; Maes, P., “Social Information Filtering: Algorithms for Automating “Word of Mouth”,” Proceedings of ACM CHI''95 Conference on Human Factors in Computing Systems, pp. 210-217, 1995.
[81] Tan, A. H.; Teo, C., “Learning User Profiles for Personalized Information Dissemination,” Proceedings of IEEE World Congress on Computational Intelligence, Vol. 1, pp. 183-188, 1998.
[82] Thissen, D.; Mislevy, R. J., Testing algorithms. In Wainer, H. (Ed.), Computerized adaptive testing: A primer, Hillsdale, New Jersey: Lawerence Erwrence Erlbaum Associates, pp. 103-135, 1990.
[83] Walope, R. E.; Myers, R. H.; Myers, S. L., Probability and Statistics for Engineers and Scientists, sixth edition, Prentice Hall, New Jersey, 1998.
[84] Wainer, H.; Dorans, N. J.; Flaugher, R.; Green, B. F.; Mislevy, R. J.; Steinberg, L.; Thissen, D., Computerized Adaptive Testing: A Primer, Hillsdale, New Jersey: Lawerence Erwrence Erlbaum Associates, 1990.
[85] Weiss, D. J.; Betz, N. E., Ability Measurement: Conventional or Adaptive? Research Report, 73-1, Psychometric Methods Program, Department of Psychology, University of Minnesota, 1973.
[86] Wright, B. D.; Masters, G. N., Rating Scale Analysis, Chicago: MESA Press, 1982.
[87] Yuwono, B.; Lee, D., “Search and Ranking Algorithms for Locating Resources on the World Wide Web,” Proceeding of 12th International Conference on Data Engineering, New Orleans, pp. 164-171, Feb. 1999.
中文部分
[88] 王寶庸,現代測驗理論,心理出版社,台北,1995。
[89] 位元文化,PHP 4.0 動態網頁徹底研究,台北,文魁資訊,2001。
[90] 余民寧,試題反應理論的介紹(一)~(十六),Taiwan Education Testing Service,2002。 Available at http://www.edutest.com.tw/e-irt/.
[91] 杜玲均,發展一套以灰色預測選題之電腦化適性測驗系統,台灣師範大學碩士論文,1997。
[92] 李沿儒、邱鈺雯、洪朝富,虛擬學院之智慧型適性教學推論,遠距教育, 第15/16期,頁 85-97,2000。
[93] 林立傑、陳冠碩、陳育亮、饒培倫、蔡振昌, 適性化的多重代理學習架構在遠距教學系統的應用,TANNET,2001。 Available at
http://www.ccu.edu.tw/TANET2001/scheduel/paper_abs/J124.html.
[94] 林信男,適性化學習網站之研究-以高中數學為例,交通大學碩士論文,2001。
[95] 洪朝富、符懋應、陳韋宏、楊順昌、張崇源、彭守正、劉彥廷、莫世民, 在World Wide Web上的適性教學環境架構,遠距教育,第13/14期,頁105-110,2000。
[96] 陳俊隆,一個以多代理人為基礎的智慧型教學代理人,逢甲大學碩士論文,1999。
[97] 許擇基、劉長萱,試題作答理論簡介,台北,中國行為科學社,1991。
[98] 楊岱霖,動態適性化學習系統之研究,高雄師範大學資訊教育研究所碩士論文,2001。
[99] 劉明洲、陳龍川、壽大衛、林鴻龍,網頁課程之適性化學習設計研究, 教育部八十八年度委託專題研究計劃報告書,1999。
URL lists:
[100] AltaVista, Available at http://www.altavista.com.
[101] Amazon, Available at http://www.amazon.com.
[102] CNN, Available at http://www.cnn.com.
[103] Direct Hit, 2000, Available at http://www.directhit.com.
[104] Distance Learning Resources Network (DLRN),
Available at http://www.dlrn.org.
[105] eBay, Available at http://ebay.com.
[106] Education Cities, Available at http://www.educities.edu.tw.
[107] E-learning in Nation Tsing Hua University,
Available at http://elearn.cc.nthu.edu.tw.
[108] E-learning in Cisco, Available at http://www.cisco.com.
[109] GMAT, Available at http://www.gmat.org.
[110] GRE, Avaiable at http://www.gre.org.
[111] Good2U, Availiable at http://www.good2u.com.
[112] Google, Available at http://www.google.com.
[113] International Data Corporation, Available at http://www.idc.com.
[114] NEC Research Institute ResearchIndex,
Available at http://citeseer.nj.nec.com.
[115] The investigation of Yam, Available at http://survey.yam.com.
[116] Yahoo, Available at http://www.yahoo.com.
[117] YAM, Available at http://www.yam.com.
[118] Taiwannews, Available at http://www.etaiwannews.com.
[119] TOEFL, Avaliable at http://www.toefl.org.
[120] Formosa TV, Available at http://www.ftvn.com.tw.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔