(3.220.231.235) 您好!臺灣時間:2021/03/08 05:59
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:張展誌
研究生(外文):Chan-Chih Chang
論文名稱:直接適應性模糊控制器之研究
論文名稱(外文):The Study on Direct Adaptive Fuzzy Controllers
指導教授:蘇順豐
指導教授(外文):Shun-Feng Su
學位類別:碩士
校院名稱:國立臺灣科技大學
系所名稱:電機工程系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:英文
論文頁數:70
中文關鍵詞:模糊控制器適應性模糊控制器直接適應性模糊控制器
外文關鍵詞:fuzzy controlleradaptiave fuzzy controllerdirect adaptive fuzzy controller
相關次數:
  • 被引用被引用:0
  • 點閱點閱:260
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
摘要
在本文中主要是針對使用適應性模糊控制器來探討對非線性不穩定系統的控制問題,這個控制器的模式是建構在 Takagi 及 Sugeno 模糊模式下,在本文中,我們針對在證明系統穩定的Lyapunov方程式中的一個參數矩陣P的變化會對系統性能有何影響來做探討,在這裡我們可以發現,雖然Lyapunov方法已經可以用來證明系統穩定,但是除了參數矩陣P要是正定對稱矩陣外,在P值大小也要做適當的選擇。在我們模擬的過程中也可以發現這種控制器是不會收斂到一個固定值,但是它可以根據誤差來適當調整它的參數。最後,我們也發現當系統有外加敏感的雜訊時,則系統會逐漸的不穩定,在此建議了兩種方法來抑制無邊界的現象,第一種是在控制器模糊系統的後件部參數值直接各別的設定邊界,另一種是在控制器模糊系統的後件部參數值取norm的大小來設定邊界,這兩種方法對於抑制無邊界訊號有著不錯的效果,從我們的模擬中,我們可以發現後者具有較好的性能。

Abstract
In this thesis, we studied the control problem of using adaptive fuzzy controllers for nonlinear unstable systems. The model of this controller is the Takagi and Sugeno fuzzy model. In this thesis, how the parameter matrix P required in the Lyapunov equation for guaranteeing the system stability can affect the system performance are discussed. It can be found that even though the Lyapunov synthesis approach has already proven the system stability, the parameter matrix P must still be selected appropriately beside of the symmetric positive definite property. In our simulations, it can also be found that this kind of controller does not converge to a fixed controller, but it adaptively adjusts its parameters according the errors. As a consequence, when the considered system has sensory noise on the states, the system may gradually become unstable. Two way of restraining such an unbounded phenomenon are proposed. One is to use a bound constraint directly for the parameters in the consequences of fuzzy rules. The other is to use a bound constraint for the norm of all parameters. Both approaches can have nice effects to restrain the unbounded signals. From our simulations, we found that the latter one has the better performances.

Table of Contents
摘 要………………………………………………………………….…i
Abstract…………………………………………..……………………..ii
誌 謝…………………………………………………………………...iii
List of Figures…………………………………………………………...v
List of Tables…………………...……………………………………….ix
Chapter 1 Introduction……….………………………………………...1
Chapter 2 Adaptive Fuzzy Systems…………………….……………...4
2.1 Introduction of Adaptive Fuzzy Systems……………………………………….4
2.2 TSK Adaptive Fuzzy Systems…………………………………………………..9
2.3 TSK-like Adaptive Fuzzy Systems……………………………………………10
2.4 Weighted TSK Adaptive Fuzzy Systems……………………..………………..11
Chapter 3 Direct Adaptive Fuzzy Controllers…………………….…14
3.1 Derivation of the Adaptive Law…………………………………...…………..15
3.2 Design of the Direct Adaptive Fuzzy Controllers………………………..……19
3.3 Performance Comparisons of A First-order Unstable System…………...……21
3.4 Performance Comparisons for A Second-order Unstable System…………….28
Chapter 4 The Study of Direct Adaptive Fuzzy Controllers……..…39
4.1 The Bounded Problem in the Lyapunov Equation…………………………….39
4.2 The Relation of the Performance and Different P……………………………..40
4.3 The Nature of Adaptive Fuzzy Controllers………………………..……….….42
4.4 The Lower Bound of A Drastic Unstable System………………………….….44
4.5 Unstable Systems with External Noise………………………………………..47
Chapter 5 Conclusions and Future Outlooks………………………….…………..66
References…………………………………………………...………….67

References
[1] L. X. Wang, “Stable adaptive fuzzy control of nonlinear systems,” IEEE Trans. Fuzzy Syst., vol. 1, pp. 146-155, May 1993.
[2] D. L. Tsay, H. Y. Chung, and C. J. Lee, “The adaptive control of nonlinear systems using the Sugeno-Type of fuzzy logic,” IEEE Trans. Fuzzy Syst., vol. 7, pp. 225-229, April 1999.
[3] L. X. Wang, A course in fuzzy systems and control, (Prentice Hall, 1997).
[4] J. Y. Chen, and C. C. Wong, “Implementation of the Takagi-Sugeno model-based fuzzy control using an adaptive gain controller,” IEE Proc. Control Theory Appl., vol. 147, no. 5, pp. 509-514, September 2000.
[5] C. C. Wong, and J. Y. Chen, “Fuzzy control of nonlinear systems using rule adjustment,” IEE Proc. Control Theory Appl., vol. 146, no. 6, pp. 578-584, November 1999.
[6] J.E. Slotine and W. Li, Applied Nonlinear Control, Englewood Cliffs, NJ: Prentice-Hall, 1991.
[7] L. A. Zadeh, “Outline of a new approach to the analysis of complex systems and decision processes,” IEEE Trans. Syst., Man. Cybern., vol. SMC-3, no. 1, pp.28-44, 1973.
[8] C. C. Lee, “Fuzzy logic in control systems: Fuzzy logic controller, parts I and II, “ IEEE Trans. Syst., Man. Cybern., vol. 20, no. 2, pp. 404-435, 1990.
[9] L. H. Tsoukalas, and R. E. Uhrig, Fuzzy and neural approaches in engineering, 1997.
[10] T. Terano, K. Asai, and M. Sugeno, Fuzzy Systems Theory and Its Applications, Academic Press, Boston, 1992.
[11] W. Pedrycz, Fuzzy Control and Fuzzy Systems, second (extended) edition, John Wiley & Sons, New York, 1993.
[12] R. R.Yager, and D. P. Filev, Essentials of Fuzzy Modeling and Control, John Wiley & Sons, New York, 1994.
[13] L. X. Wang, “Stable adaptive Fuzzy Controllers with Application to Inverted Pendulum Tracking,” IEEE Trans. Syst., vol. 26, no. 5, pp. 677-691, October 1996.
[14] L. X. Wang and J. M. Mendel, “Fuzzy basis functions, universal approximation, and orthogonal least squares learning,” IEEE Trans. Neural Networks, vol. 3, pp. 807-814, 1992.
[15] T. Takagi, and M. Sugeno, “Fuzzy Identification of Systems and its Applications to Modeling and Control,” IEEE Trans on Sist. Man and Cib., vol. SMC-15, no 1, pp. 116-132, 1985.
[16] S. Takashima, 100 Examples of Fuzzy Theory Application mostly in Japan, Trigger, July, 1989.
[17] W. T. Miller, R. S. Sutton, and P. J. Werbos, Eds., Neural Networks for Control, Cambridge, MA: The MIT Press, 1990.
[18] K. S. Narendra and K. Parthasarathy, “Identification and control of dynamical systems using neural networks,” IEEE Trans. Neural Networks, vol. 1, no. 1, pp. 4-27, 1990.
[19] M. M. Polycarpou and P. A. Ioannou, Identification and control nonlinear systems using neural network models: Design and stability analysis, USC EE-Reprot 91-09-01, 1991.
[20] R. M. Sanner and J. E. Slotine, “Gaussian networks for direct adaptive control,” in Proc. Amer. Contr. Conf., pp. 2153-2159, 1991.
[21] Y. J. Chen, “Fuzzy sliding mode controller design: indirect adaptive approach,” Cybern. Syst., 30, (1), pp. 9-27, 1999.
[22] H. Ying, “Constructing nonlinear variable gain controllers via the Takagi-Sugeno fuzzy control,” IEEE Trans. Fuzzy Syst., vol. 6, no. 2, pp.226-234, 1998.
[23] E. H. Mamdani., “Application of Fuzzy Algorithms for Control of Simple Dynamic Plants,” Proceedings of IEE, vol. 121, no. 12, pp. 1585-1588, 1974.
[24] R. C. Dorf, and R. H. Bishop, Modern Control Systems, Addison-Wesley, 1998.
[25] C. T. Chen, Linear System Theory and Design, 1988.
[26] L. X. Wang and J. M. Mendel, “Three-dimensional structured networks for matrix equation solving,” IEEE Trans. Comput., vol. 40, no. 12, pp. 1337-1346, 1991.
[27] G. C. Goodwin and D. Q. Mayne, “A parameter estimation perspective of continuous time model reference adaptive control,” Automatica, vol. 23, pp. 57-70, 1987.
[28] D. G. Luenberger, Linear and Nonlinear Programming, Reading, MA:Addison-Wesley, 1984.
[29] T. Takagi and M. Sugeno, “Fuzzy Identification of Systems and Its Application to Modeling and Control,” IEEE Trans. on System, Man, and Cybernetics, vol. 15, no. 1, pp. 116-132, January/February 1985.
[30] J. J. Buckley, “Sugeno Type Controllers are Universal Controllers,” Fuzzy Sets and Systems, vol. 53, pp. 299-303, 1993.
[31] J. L. Castro, “Fuzzy Logic Controllers are Universal Approximators,” IEEE Trans. on Systems, Man, and Cybernetics, vol. 25, no. 4, pp. 629-635, April 1995.
[32] K. Tanaka and M. Sano, “A Robust Stabilization Problem of Fuzzy Control Systems and Its Application to Backing up Control of a Truck-Tailer,” IEEE Trans. on Fuzzy Systems, vol. 2, no. 2, pp. 119-134, May 1994.
[33] C. L. Chen, P. C. Chen, and C. K. Chen, “Analysis and Design of Fuzzy Control System,” Fuzzy Sets and Systems, vol. 57, pp. 125-140, 1993.
[34] K. Tanaka and M. Sugeno, “Stability Analysis and Design of Fuzzy Control Systems,” Fuzzy Sets and Systems, vol. 45, pp. 135-156, 1992.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文
 
1. [14]羅隆和,「保護電驛應用電力線載波之探討」, 中華民國電驛協會會刊第九期,pp.36-42,民國八十八年六月。
2. [20]陳順斌,「RFL9745音頻機組搭配保護電驛之應用」,中華民國電驛協會會刊第十二期,pp.37-50,民國八十九年十二月。
3. [20]陳順斌,「RFL9745音頻機組搭配保護電驛之應用」,中華民國電驛協會會刊第十二期,pp.37-50,民國八十九年十二月。
4. [19]張永榮,「無線電波對保護電驛干擾之探討」,中華民國電驛協會會刊第九期,pp. 57-65,民國八十八年六月。
5. [19]張永榮,「無線電波對保護電驛干擾之探討」,中華民國電驛協會會刊第九期,pp. 57-65,民國八十八年六月。
6. [16]施有為,「電力監控系統與資訊末端設備之演進」,電機月刊第九卷第八期,pp.156-162,1999。
7. [16]施有為,「電力監控系統與資訊末端設備之演進」,電機月刊第九卷第八期,pp.156-162,1999。
8. [12]李河樟,「線路保護方式方向比較POTT」, 中華民國電驛協會會刊第九期,pp.43-56,民國八十八年六月。
9. [15]李國楨,「光纖數位傳輸技術應用於電驛系統之探討」,中華民國電驛協會會刊第九期,pp.26-43,民國八十七年十二月。
10. [15]李國楨,「光纖數位傳輸技術應用於電驛系統之探討」,中華民國電驛協會會刊第九期,pp.26-43,民國八十七年十二月。
11. [14]羅隆和,「保護電驛應用電力線載波之探討」, 中華民國電驛協會會刊第九期,pp.36-42,民國八十八年六月。
12. [12]李河樟,「線路保護方式方向比較POTT」, 中華民國電驛協會會刊第九期,pp.43-56,民國八十八年六月。
13. [24]李兆惠,「可程式控制器應用於水力電廠遙控之實例」,電機月刊第九卷第八期,pp.163-168,1999。
14. [24]李兆惠,「可程式控制器應用於水力電廠遙控之實例」,電機月刊第九卷第八期,pp.163-168,1999。
15. [25]柯嘉城,「PC-based開放式控制系統的發展與應用」,電機月刊第九卷第六期,pp.140-143,1999。
 
系統版面圖檔 系統版面圖檔