|
[1] M. S. Yang, “On fuzzy clustering,” in Proc. of the 1st Nat. Symp. on Fuzzy Set Theory & Appl., Hsinchu, Taiwan, 1993, pp. 133-142. [2] J. T. Tou and R. C. Gonzalez, Pattern Recognition Principles, Reading, MA: Addison-Wesley, 1974, chap. 3, pp. 97-104. [3] D. Chaudhuri, B. B. Chaudhuri, and C. A. Murthy, “A new split-and-merge clustering technique,” Pattern Recognition Letters, vol. 13, pp. 399-409, 1992. [4] S. Z. Selim and K. Alsultan, “A simulated annealing algorithm for the clustering problem,” Pattern Recognition, vol. 24, no. 10, pp. 1003-1008, 1991. [5] D. E. Brown and C. L. Huntley, “A practical application of simulated annealing to clustering,” Pattern Recognition, vol. 25, no. 4, pp. 401-412, 1992. [6] Q. Zhang and R. D. Boyle, “A new clustering algorithm with multiple runs of iterative procedures,” Pattern Recognition, vol. 24, no. 9, pp. 835-848, 1991. [7] E. H. Ruspini, “A new approach to clustering,” Inform. & Control, vol. 15, pp. 22-32, 1969. [8] J. C. Bezdek, Pattern Recognition with Fuzzy Objective Function Algorithms, New York: Plenum Press, 1981, chap. 3, pp. 65-80. [9] R. N. Dave, “Generalized fuzzy c-shells clustering and detection of circular and elliptical boundaries,” Pattern Recognition, vol. 25, no. 7, pp. 713-721, 1992. [10] R. Krishnapuram, O. Nasraoui, and H. Frigui, “The fuzzy c spherical shells algorithm: a new approach,” IEEE Trans. Neural Net., vol. 3, no. 5, pp. 663-670, 1992. [11] R. J. Hathaway, D. D. Overstreet, Y. Hu, and J. W. Davenport, “Generalized fuzzy c-means clustering in the presence of outlying data,” in Proc. of the SPIE on Applications and Science of Computational Intelligence II, Orlando, FL, USA, April, 1999, vol. 3722, pp. 509-517. [12] R. P. Li and M. Mukaidono, “A maximum entropy approach to fuzzy clustering,” in Proc. of the 4th IEEE Int. Conf. on Fuzzy Systems, Yokohama, Japan, March, 1995, pp. 2227-2232. [13] D. E. Goldberg, Genetic Algorithms in Search, Optimization, and Machine Learning, Reading, MA: Addison-Wesley, 1989, chap. 3, pp. 59-86. [14] G. P. Babu and M. N. Murty, “Clustering with evolution strategies,” Pattern Recognition, vol. 27, no. 2, pp. 321-329, 1994. [15] T. V. Le, “Evolutionary fuzzy clustering,” in Proc. of IEEE Int. Conf. on Evolutionary Comput., Perth, Western Australia, 1995, pp. 753-758. [16] F. Klawonn and A. keller, “Fuzzy clustering with evolutionary algorithm,” Int. Jour. of Intelligent Systems, vol. 13, pp. 975-991, 1998. [17] K. S. Al-Sultan and S. Z. Selim, “A global algorithm for the fuzzy clustering problem,” Pattern Recognition, vol. 26, no. 9, pp. 1357-1361, 1993. [18] S. Chitroub, A. Houacine and B. Sansal, “Robust optimal fuzzy clustering algorithm applicable to multispectral and polarimetric synthetic aperture radar images,” in Proc. of the SPIE on Image and Signal Processing for Remote Sensing V, Florence, Italy, Sept., 1999, vol. 3871, pp. 325-336. [19] S. Miyamoto and S. Katoh, “Crisp and fuzzy methods of optimal clustering on networks of objects,” in Proc. of the 1998 Second Int. Conf. on Knowledge-Based Intelligent Electronic Systems, Adelaide, Australia, April, 1998, pp. 8-14. [20] J. H. Wang and C.Y. Peng, “Optimal clustering using neural networks,” in Proc. of IEEE Int. Conf. on Syst. Man, and Cybern., vol. 2, pp. 1625-1630, 1998. [21] Y. Guo, X. Yin, and W. Gong, “ART2 neural network clustering for hierarchical simulation,” in Proc. of the SPIE - The Int. Society for Optical Engineering, vol.3369, pp.35-48, 1998. [22] M. F. Augusteijn and U.J. Steck, “Supervised adaptive clustering: a hybrid neural network clustering algorithm,” Neural Computing & Applications, vol.7, no.1, pp.78-89, 1998. [23] T. Kohonen, Self-Organization and Associative Memory, Berlin: Springer-Verlag, 1984. [24] J. M. Zurada, Introduction to Artificial Neural Systems, Singapore: Info Access & distribution Pte Ltd, 1992, chap. 7, pp. 414-420, chap. 6, pp. 354-370. [25] T. L. Huntsberger and P. Ajjimarangsee, “Parallel self-organizing feature maps for unsupervised pattern recognition,” Int. J. General Systems, vol. 16, pp. 357-372, 1990. [26] E. C. Tsao, J. C. Bezdek and N. R. Pal, “Fuzzy Kohonen clustering network,” Pattern Recognition, vol. 27, no. 5, pp. 757-764, 1994. [27] J. Lin, K. Cheng and C. Mao, “A fuzzy Hopfield neural network for medical image segmentation,” IEEE Trans. on Nuclear Science, vol. 43, no. 4, pp. 2389-2398, Aug. 1996. [28] J. A. Freeman and D. M. Skapura, Neural Networks, Algorithms, Applications, and Programming Techniques, Reading, MA: Addison-Wesley, 1992, chap. 4, pp. 131-141. [29] R. Bellman, R. Kalaba and L. A. Zadeh, “Abstraction and pattern classification,” J. Math. Anal. and Appl., vol. 2, pp. 581-586, 1966. [30] E. H. Ruspini, “A new approach to clustering,” Inform. and Control, vol. 15, pp. 22-32, 1969. [31] H. J. Zimmermann, Fuzzy Set Theory and Its Applications, 2nd Ed., Boston, MA: Kluwer Academic, 1991, chap. 11, pp. 220-236. [32] J. C. Dunn, “A fuzzy relative ISODATA process and its detecting compact, well-separated clusters,” Jour. Cybern., vol. 3, pp. 32-57, 1974. [33] H. Thiele, “Characterization of arbitrary Ruspini partitions by fuzzy similarity relations,” in Proc. of the 6th IEEE Int. Conf. on Fuzzy Systems, pp.131-134, 1997. [34] I. B. Turksen, “A fuzzy neural hybrid system modeling,” in Proc. of the IEEE Int. Conf. on Neural Networks, pp. 2337-2341, 1997. [35] H. S. Rhee and K. W. Oh, “Performance measure for the fuzzy cluster validity,” in Proc. of the Asian Fuzzy Systems Symp., pp. 364-369, 1996. [36] S. Miyamoto, “An overview and new methods in fuzzy clustering,” in Proc. of the 1998 Second Int. Conf. on Knowledge-Based Intelligent Electronic Systems, Adelaide, Australia, April, 1998, pp. 33-40. [37] A. Yamakawa, Y. Kanaumi, H. Ichihashi and T. Miyoshi, “Simultaneous application of clustering and correspondence analysis,” in Proc. of the Int. Joint Conf. on Neural Networks, Washington, DC, July, 1999, pp. 4334-4338. [38] R. C. Gonzalez and R. E. Woods, Digital Image Processing, 3rd Ed., Reading, MA: Addison-Wesley, 1992, chap. 2, pp. 45-47. [39] J. E. Steck, “Convergence of recurrent networks as contraction mappings,” in Proc. of the Int. Joint Conf. on Neural Networks, vol. III, pp. 462-467, 1992. [40] L. K. Li, “Fixed point analysis for discrete-time recurrent neural networks,” in Proc. of the Int. Joint Conf. on Neural Networks, vol. 4, pp. 134-139, 1992. [41] J. E. Steck and S. N. Balakrishnan, “Use of Hopfield neural networks in optimal guidance,” IEEE Trans. Aerosp. Electron. Syst., vol. 30, no. 1, pp. 287-293, Jan. 1994. [42] R. E. Greene, Introduction to topology, New York, NY: Saunders College Publishing, 1983, chap. 1, pp. 2-43. [43] R. N. Dave, “Characterization and detection of noise in clustering,” Pattern Recognition Letters, vol. 12, pp. 657-664, 1991. [44] M.Nadler and E. P. Smith, Pattern Recognition engineering, New York, NY: John Wiley & Sons, Inc., 1993, chap. 7, pp. 340-345.
|