(54.236.58.220) 您好!臺灣時間:2021/02/27 17:12
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:陳翰林
論文名稱:逆解鍛粗中空圓管及複合材圓柱之摩擦係數研究
論文名稱(外文):Friction coefficient inverstigation on upsetting of hollow cylinder and complex cylinder by inverse methodology
指導教授:林 榮 慶
學位類別:碩士
校院名稱:國立臺灣科技大學
系所名稱:機械工程系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
中文關鍵詞:中空鍛粗
相關次數:
  • 被引用被引用:3
  • 點閱點閱:280
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:2
在金屬成形過程中,藉由此模擬架構,讓我們能對金屬成形的結果有更大的把握,是我們努力的目標。本文以鍛粗中空圓管與複合材圓柱為例,工件與模具的接觸面摩擦現象一直是被關心討論的問題,本文的重點為如何決定在鍛粗中空圓管與複合材圓柱過程中其摩擦係數的變化,以逆問題求解未知參數的概念,並以實驗量測值為基準,並選用數值最佳化Levenberg-Marquardt Method,加上特定限制函數與收斂準則,配合軸對稱彈塑有限元素法,逆解在中空圓管與複合材圓柱鍛粗成形過程中摩擦係數的變化,並以微觀角度對此摩擦係數變化做一說明。
藉由本文逆算回歸演算架構,可得到更為接近實際情況的物理現象,以使整個中空圓管與複合材圓柱鍛粗成形過程更為完整。本文針對不同幾何尺寸及複合材料做案例說明,針對中空圓管鋁材以及鋁、銅複合材圓柱冷鍛為例,以實驗量測得之負荷為基準,以逆解回歸其鍛粗過程中摩擦係數的變化,並以工件模擬之負荷,以及外形變化情形,皆與其實驗所得現象更為吻合,可進一步驗證本文以負荷逆算回歸摩擦因子的合理性。
本文中模擬所得表面接觸節點之位移座標增量方向,用以判定接觸節點摩擦力之方向,並判別出工件表面節點間相對中立點位置;再以複合材圓柱之 表面接觸材料性質不同,摩擦係數亦因而不同,故求其相異之摩擦係數,並以負荷值作為逆解複合材圓柱於鍛粗過程中摩擦係數之目標函數,並以外型作為確認 。
目 錄
中文摘要 I
ABSTRACT II
致 謝 IV
1 第一章 緒論 1
1.1 逆問題簡介 1
1.2 研究動機與背景 3
1.3 文獻回顧 5
1.4 本文架構 7
2 第二章 軸對稱彈塑有限元素法簡介 9
2.1 基本假設 9
2.2 軸對稱熱彈塑應力-應變關係矩陣的建立 10
2.2.1 彈性範圍內之變形 10
2.2.2 塑性範圍內的變形 11
2.3 大變形之應變、應變率、應力和應力率 16
2.3.1 應變及應變率 16
2.3.2 應力及應力率 19
2.4 熱彈塑大變形-大應變的統御方程式 20
2.4.1 有限元素法模式 22
2.5 荷重修正矩陣及摩擦修正矩陣 26
2.5.1 荷重修正矩陣 26
2.5.2 摩擦修正矩陣 31
2.6 邊界條件之修正 32
2.6.1 邊界條件之設定 32
2.6.2 上表面邊界中摩擦力方向之判別 34
2.6.3 複合材之邊界處理 34
3 第三章 逆解演算法 35
3.1 目標函數以負載為逆算解法作介紹 35
3.2 最佳化之概述 36
3.3 定義目標函數及限制函數 38
3.4 鍛粗軸對稱彈塑有限元素逆算流程 39
3.5 鍛粗逆算回歸流程之修正 45
3.5.1 負荷 45
3.5.2 中立點判別 45
3.5.3 複合材 45
4 第四章 實驗 47
4.1 實驗材料 47
4.2 實驗方法 50
4.2.1 實驗目的 50
4.2.2 實驗設備 51
4.3 實驗結果 54
5 第五章 空心鋁材實例探討與說明 57
5.1 定義模擬邊界條件 57
5.2 模擬參數之輸入 57
5.2.1 鋁材之中空圓管(以負荷為基準逆算) 57
5.2.2 結果與討論 68
6 第六章 空心鋁材實例探討與說明 71
6.1 定義模擬邊界條件 71
6.2 模擬參數之輸入 71
6.2.1 鋁材之中空圓管(以負荷為基準逆算) 71
6.2.2 摩擦現象說明 82
6.2.3 結果與討論 83
7 第七章 複合材圓柱實例探討與說明 86
7.1 定義模擬邊界條件 86
7.2 模擬參數之輸入 87
7.2.1 複合材圓柱之實心鍛粗(以負荷為基準逆算) 87
7.2.2 結果與討論 97
8 第八章 結論與建議 100
8.1 結論 100
8.2 建議 102
參考文獻 104
1. Tikhonov,A.N. and Arsenin, V. Y., “Solution of Ill-posed Problems,” V. H. Winston and Sons, Washington, D.C.(1977).
2. Zantev, V. K., Markov, V. F. and Skugarev, V. P., “Application of Inverse Heat Conduction problems in Experimental Investigations of Heat Exchange of Casting Units of Furnaces, “ Journal of Engineering Physics, Vol. 45, No. 5, pp.1318-1322, Nov.(1983).
3. Huang C. H., Ju T. M. and Tseng A. A., “The Estimate of Surface Thermal Behavior of the Working Roll in Hot Rolling Process,” Int. J. Heat Mass Transfer. Vol. 38, No. 6, pp. 1019-1031(1995).
4. Karstein. Sorli, and Inge M. Skaar, ”Monitoring the Wear-Line of a Melting Furnace,” Inverse Problems in Engineering: Theory and Practice 3rd Int. Conference on Inverse problems in Engineering June 13-18, Port Ludlow, WA, USA(1999).
5. Lin, J., “Inverse Estimation of the Tool-Work Interface Temperature in End Milling,” International Journal of Machine Tools & Manufacture Vol. 35, No. 5, pp. 751-760(1995).
6. Park K. C. and Felippa Carlos A., “A Flexibility-based Inverse Algorithm For Identification of Substructural and Joint properties,” AMD-Vol. 228, Computational Methods for Solution of Inverse Problems in Mechanics, ASME, pp.11-22(1998).
7. Shiro Kubo, Koji Fukumoto, and Kiyotsugu Ohji, “An Application of the Mollification Method to Estimation of Governing Equation of Field Problem From Noisy Observations”, Inverse Problems in Engineering:Theory and Practice, ASME, pp. 246(1998).
8. 張三木,”預估鍛造過程中表面摩擦係數的變化”,國立成功大學碩士論文(1997).
9. Lin S. Y., ”An Investigation of Die-Workpiece Interface Friction During the Upsetting Process,” Journal of Materials Processing Technology, Vol. 54, pp. 239-248(1995).
10. Sparrow, E. M., Haji-Sheikh A. and Lundgern, T. S. “The Inverse Problem in Transient Heat Conduction,” J. Appl. Mech., Vol. 86e, pp. 369-375(1964).
11. Alifanov, O. M., “Solution of an Inverse Problem of Heat Conduction by iteration method,” Journal of Eng. Phys., Vol. 26, No. 4, pp. 471-476(1974).
12. Trujillo D. M., “Application of Dynamic Programming to the General Inverse Problem,” International Journal for Numerical Methods in Engineering, Vol. 12, pp. 613-624(1978).
13. Trujillo D. M. and Busby Henry R., Practical Inverse Analysis in Engineering, CRC Press, Boca Raton, New York(1997).
14. Beck, J. V., “Surface Heat Flux Determination Using an Integral Method,” Nucl. Eng. Dec., Vol. 7, pp. 170-178(1968).
15. Alifanov, O. M. and Mikhailov, V. V., ”Solution of the Nonlinear Inverse Thermal Conductivity Problem by the Iteration Method,” High Temperature, Vol. 35,No. 6, pp. 1501-1506(1978).
16. Beck, J, V., Blackwell, B. and Haji-Sheikh, A., ”Comparison of Some Inverse Heat Conduction Methods Using Experimental Data,” International Journal of Heat and Mass Transfer, Vol. 39, No. 17, pp. 3649-3657(1996).
17. Blanc, G., Beck, J. V. and Raynaud, M., ”Solution of the Inverse Heat Conduction Problem with a Time-Variable Number of Future Temperatures,” Numerical Heat Transfer, Part B, Vol. 32, pp. 437-451(1997).
18. Kishimoto, K., Shibuya, T., Inoue, H., and Shinbo, H., ”Inverse Analysis Related to Stress Separation in Thermoelastic Stress Analysis,” JSME International Journal. Series A, Solid Mechanics and Material Engineering(1997).
19. Huang C. H., Ozisik M. N. and Sawaf B., “Conjugate Gradient Method for Determining Unknown Contact Conductance During Metal Casting,” Int. J. Heat Mass Transfer, Vol. 25, No 7, pp. 1799-1786(1992).
20. Tudor Balan, Lionel Fourment, and Jean-Loup Chenot, ”Shape Optimization of the Preforming Tools in forging,” Inverse problems in Engineering:Theory and Practice, ASME(1998).
21. 洪茂人,”熱鍛製程變形與熱傳的逆向分析,”國立成功大學機械工程學系碩士論文(1998).
22. Lee, C. H. and Kobayashi S., “Analyses of Axisymmetric Upsetting and Plane-Strain Side-Pressing of Solid Cylinders by the Finite Element Method,” J. Engng. Ind. Vo1.93, pp.445-454(1971).
23. McMeeking, R. M. and Rice J. R., “Finite Element Formulation for Problem of Large Elastic-Plastic Deformation,” Int. J. Solids Struct. Vol. 11, pp.601-616(1975).
24. Pillinger, I., P. Hartley, C. E. N. Sturgess and G. W. Rowe, ”Finite- Element Modelling of Metal Flow in Three-Dimensional Forming,” Int. J. Numer. Meth. Engng. Vo1.25, pp.87-97(1988).
25. Rebelo, N. and Kobayashi S., “A Coupled Analysis of Viscoplastic Deformation and Heat Transfer-I,” Int. J. Mech. Sci. Vo1. 22, pp. 699-705(1980).
26. Rebelo, N. and Kobayashi S., “A Coupled Analysis of Viscoplastic Deformation and Heat Transfer-II,” Int. J. Mech. Sci Vo1. 22, pp. 707-718(1980).
27. Male, A. T. and Cockcroft, M.G., “A Method for the Determination of the Coefficient of Friction of Metals Under Conditions of Bulk Plastic Deformation,” J. Inst. Met., Vol. 93, pp. 38-46(1964-65).
28. Avitzur, B. and Sauerwine, F., ”Limit Analysis of Hollow Disk Forging,” Trans. ASME. J. Eng. Ind., Vol. 100, pp. 340-346(1978).
29. Depierre, V. and Gurney, F., “A Method for Determination of Constant and Varying Friction Factors During Ring Compression Tests,” Trans. ASME. J. Lubr. Technol., Vol. 96, pp. 482-488(1974).
30. Xu, W. L., Rao, K. P., Watanabe, T., and Hua, M. “Analysis of Ring Compression Using Artificial Neural Network,” J. Mater. Process. Technol., Vol. 44, pp.301-308(1994).
31. Rao, K. P. and Xu, W. L., “Neural Evaluation of Friction and Flow Stress Adaptive to Ring Geometry,” JSME. Int. J. :Series A, Vol. 38, No. 4, pp. 506-514(1995).
32. Hwang, S. M. and Kobayashi, S., “A Note on Evaluation of Interface Friction in Ring Tests,” Proc. Of the 18th MTDR Conference, pp. 193-196(1977).
33. 陳正堃,”鍛粗成形參數的預估之逆向問題研究,”國立台灣科技大學機械工程學系碩士論文(2001).
34. Yamada, Y., “Visco-elasticity Plasticity,” Baifukan, Japan(1980).
35. Rao S. S., “The Finite Element Method in Engineering”, Pergamon Press Inc., U.S.A.(1982).
36. Lin, Z. C. and T. G. Huang "Different Reduction Rates and Sliding Phenomenon Study for three-dimensional Hot Rolling with Sandwich Flat Strip", International Journal of Mechanical Sciences. 42,pp1983-2012(2000).
37. Dennis J. E., JR. and Schnabel Robert B., “Numerical Methods for Unconstrained Optimization and NonLinear Equations,” Prentice-Hall, Inc., Englewood Cliffs, New Jersey(1988).
38. Schnur D. S. and Zabaras Nicholas, ”An Inverse Method For Determining Elastic Material Properties And A Material Interface,” International Journal for Numerical Methods in Engineering, Vol. 33, pp. 2039-2057(1992).
39. Ravi V. and Jennings A. A., “Penetration Model Parameter Estimate From Dynamic Permeablity Measurements,” Soil Sci. Soc. Am. J., Vol. 54(1990).
40. Marquardt, D. W., “An Algorithm for the Estimate of Non-Linear Parameter,” Soc. Ind. Appl. Maths., pp. 431-441(1963).
41. Klepaczko J. R., “A Practical Stress-Strain-Strain Rate-Temperature Constitutive Relation of the Power Form,” Journal of Materials Working Technology,15 17, pp. 143-165(1987).
42. Thiebaut C., Bonnet C., and Morey J.M., ”Evolution of the Friction Factor of a Molybdenum Workpiece During Upsetting Tests at Different Temperature,” Journal of Materials Processing Technology, vol. 77, pp. 204-205(1998).
43. Lahoti G. D. and Altan T., “Prediction of Temperature Distribution in Axisymmetric Compression and Torsion,” Journal of Engineering Materials and Technology, pp.113-120(1975).
44. Moore D. F., “Principles and Application of Tribology,” Oxford, New York, Pergamon Press(1975).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔