(44.192.10.166) 您好!臺灣時間:2021/03/06 19:22
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:王錦華
研究生(外文):Chin-Hua Wang
論文名稱:韌性斜撐構材之力學行為及韌性同心斜撐系統之耐震性能
論文名稱(外文):Behavior of Buckling Inhibited Braces and Seismic Performance of the Ductile Concentrically Braced Frame System
指導教授:陳正誠陳正誠引用關係
指導教授(外文):Cheng-Cheng Chen
學位類別:博士
校院名稱:國立臺灣科技大學
系所名稱:營建工程系
學門:工程學門
學類:土木工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:339
中文關鍵詞:斜撐鋼結構消能量損傷指標
外文關鍵詞:bracesteel structureenergy dissipationdamage index
相關次數:
  • 被引用被引用:3
  • 點閱點閱:847
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
韌性斜撐構材(Buckling Inhibited Brace, BIB)是由主受力元件與側撐元件組成,其軸力(拉力與壓力)由主受力元件承擔,側撐元件提供主受力元件連續之側向支撐,防止主受力元件受壓挫屈。由於主受力元件在軸壓力下不產生挫屈,因此主受力元件之軸向強度及延展性可有效發展,並充分發揮鋼材之消能容量。韌性同心斜撐構架(DCBF)採用BIB以取代傳統之斜撐,因此BIB高強度、高消能,高韌性之特性,亦轉為DCBF之特性。本研究探討:(1)BIB構材之挫屈強度;(2) BIB構材在反復載重下之遲滯行為與遲滯模式;(3) BIB構材之疲勞壽命與損傷模式;(4)探討二元DCBF的耐震性能。
A Buckling Inhibited Brace, or BIB, is composed of a main load-carrying element and a lateral-support element. The axial forces (tension and compression) are taken only by the main load-carrying element. The lateral-support element provides continuous lateral support for main load-carrying element to prevent the load-carrying element from buckling. The axial strength, energy dissipation capacity and ductility of main load-carrying element can be completely developed. A frame employing BIBs as concentric braces is called Ductile Concentrically Braced Frame, or DCBF. Four topics about BIBs are explored in this study: (1) the buckling behavior of BIBs;(2) the hysteretic behavior and models of BIBs; (3) the low cycle fatigue life and damage model of BIBs; (4) the seismic performance of DCBF.
第一章緒論
1.1研究背景
1.2 BIB之型式
1.3研究目的與研究範圍
1.4文獻回顧
第二章韌性斜撐之挫屈強度
2.1 前言
2.2 臨界分析
2.2.1 變斷面壓力構材之臨界載重
2.2.2 彈性基礎梁分析模式
2.3 挫屈強度分
2.3.1 初始變形形狀對挫屈行為之影響
2.3.2 Inoue分析法
2.3.3 逐步數值積分法
2.3.4 均勻斷面二次分析模式
2.4 BIB構材挫屈試驗
2.4.1 試驗計劃
2.4.2 載重-側向變位曲線
2.4.3 挫屈強度
2.4.4 主受力元件與側撐元件相對勁度比對載重-側向位移
關係之影響
2.5 設計建議
2.8 BIB構材挫屈強度之結論
第三章韌性斜撐之遲滯行為與遲滯模式
3.1 前言
3.2 BIB構材試驗計劃
3.2.1 試體規劃
3.2.2主受力元件之設計與製作
3.2.3 側撐元件之設計與製作
3.2.4 試驗裝置與載重歷程
3.3 試驗結果與討論
3.3.1 BIB構材之遲滯行為
3.3.2 強度與延展性
3.3.3 主受力元件之破壞模式
3.3.4 消能容量
3.3.5 側撐元件
3.4 BIB構材之遲滯模式
3.4.1 LYS-BIB構材
3.4.2 A572-BIB構材
3.4.3 TMCP-BIB構材
3.5 韌性斜撐之遲滯行為與遲滯模式結論
第四章韌性斜撐之疲勞壽命與損傷模式
4.1 前言
4.2 疲勞壽命
4.2.1 LYS-BIB構材之疲勞壽命
4.2.2 A572-BIB構材之疲勞壽命
  4.2.3 TMCP-BIB構材之疲勞壽命
4.3損傷模式
4.3.1 Miner損傷模式
  4.3.2 Chung損傷模式
  4.3.3 Park-Ang模式
  4.3.4 McCabe-Hall模式
4.3.5 消能量模式
4.4 BIB構材之容許損傷指標
  4.5 BIB構材疲勞壽命與損傷模式結論
第五章韌性同心斜撐構架耐震性能
  5.1 前言
  5.2 分析模型設計
  5.3 地震記錄
  5.4 構架分析與性能評估指標
  5.4.1構架分析模式
  5.4.2結構性能評估指標
5.5 設計水準之地震強度下DCBF與SMRF耐震性能比較
  5.5.1層間位移角
5.5.2塑性鉸之分佈與最大塑性轉角
5.5.3殘留變位
5.6 實際地震下DCBF之耐震性能
5.6.1層間位移角
5.6.2塑性鉸之分佈與最大塑性轉角
5.6.3 BIB之遲滯迴圈
5.6.4 BIB構材之疲勞損傷
5.7韌性同心斜撐構架耐震性能結論
第六章結論與建議
6.1研究之回顧
6.2結論與建議
6.2.1 BIB構材挫屈行為
6.2.2 BIB構材之遲滯行為與遲滯模式
6.2.3 BIB構材之疲勞壽命與損傷模式
6.2.4 DCBF之耐震性能比較95
符號說明
參考文獻
本文圖表
附錄
參考文獻
[1]Structural Engineers Association of Califonia, Recommended Lateral Force Requirements, SEAOC, Sacramento, CA., (1996).
[2]「建築物耐震設計及解說」,內政部營建署,p.19,1997年7 月。
[3]林樹柱等,1994年元月17日美國洛杉磯北嶺地震震災訪察報告,國家地震工程研究中心。
[4]中華民建築學會,「日本阪神大地震勘災訪問報告」,1995年1月17日。
[5]內政部建築研究所,「921集集大地震建築物震害調查初部報告」,民國八十八年十一月。
[6]OES, California Office of Emergency Services, Vision 2000: Performance Based Seismic Engineering of Buildings. Prepared by Structure Engineers Association of California, Sacramento, California., (1995).
[7]Lee, S.J., and Lu, L.W., “Quasi-Static Tests of Scaled Model Building”, J. Struct., Engrg. ASCE. Vol. 115, No. 8, (1989).
[8]Yamanouchi , H. , Midorikawa , M. , Nishiyama , I. And Watabe , M. , ” Seismic Behavior of Full-Scale Concentrically Braced Frame Building Structure ” , J. Struct. Engrg. ASCE , Vol. 115 , No. 8 , (1989).
[9]Bertero, V.V., Uang, C.M., Llopiz, C.R., and Igarashi, K., “Earthquake Simulator Testing of Concentrically Braced Dual System,” J. Struct., Engrg. ASCE. Vol. 115, No. 8, (1989).
[10]Tang , X. and Goel , S. C. , ” Brace Fractures and Analysis of phase I Structure ” , J. Struct. Engrg. ASCE , Vol. 115 , No. 8 , (1989).
[11]AISC, “Manual of Steel Construction-ASD,” 9th Edition, (1989).
[12]「鋼構造建築物鋼結構設計技術規範(一)鋼結構容許應力設計法規範及解說」,內政部營建署,第137頁。
[13]Goel, S.C., ”Earthquake Resistant Design of Ductile Braced Steel Structures,” Stability and Ductility of Steel Structures under Cyclic Loading, CRC press, pp297-308.(1992)
[14]American Institute of Steel Construction, Inc., Seimic Provisions for Structural Steel Buildings, AISC, Chicago, IL., (1997).
[15]Chen , C. C. ” Approaches to Improve Seismic Resistance of Steel Building Frames ” , Ph.D Dissertation , Department of Civil Engrg. , Lehigh University , Bethlehem , PA , (1991).
[16]M. Wakabayashi, T. Nakamura, T. Morizono and H. Yokoyama, “Cyalic Behavior of Steel Braces Isolated in Precast Concrete Panels-Basic Study on Small Scale Models,” Annual Symposium of Architectural Institute of Japan,(1973).
[17]Watanabe, A., Hitomi, Y. Saeki, E., Wada, A, and Fujimoto, M., “Properties of Brace Encased in Buckling-Restraining Concrete and Steel Tube,” Proceedings of Ninth Word Conference on Earthquake Engineering, Tokyo-Kyoto, Japan, (1988).
[18]李豪吉,「鋼筋混凝土構架耐震補強研究-增設斜撐及鋼剪力牆」,碩士論文,國立台灣科技大學營建系,台北,民國八十九年七月,96頁。
[19]中華民國鋼結構協會,結構用鋼材之規格與性能手冊,第6~7頁,民國八十六年。
[20]陳正誠,「韌性同心斜撐構架與韌性斜撐構材之耐震行為與設計」,結構工程,第十五卷,第一期,民國八十九年三月,第53~78頁。
[21]李文芳,「BIB構材在反覆荷重下之行為研究」,碩士論文,國立台灣工業技術學院營建系,台北,民國八十三年七月,141頁。
[22]莊德升,「韌性斜撐構材及韌性同心斜撐構架之受力行為研究」,碩士論文,國立台灣工業技術學院營建系,台北,民國八十五年七月,131頁。
[23]廖俊傑,「低降伏強度與A36鋼材在韌性同心斜撐構材之應用研究」,碩士論文,國立台灣科技大學營建系,台北,民國八十七年六月,121頁。
[24]蔡坤義,「金屬消能元件之遲滯行為與消能特性」,碩士論文,國立台灣科技大學營建系,台北,民國八十七年六月,93頁。
[25]黃添進,「韌性斜撐構材之斷裂行為與挫屈強度之研究」,碩士論文,國立台灣科技大學營建系,台北,民國八十八年六月,146頁。
[26]蘇慶泯,「韌性斜撐構材之遲滯行為與斷裂預測」,碩士論文,國立台灣科技大學營建系,台北,民國八十九年七月,80頁。
[27]Wakabayashi, M., Nakamura, T.,Dashibara, A., Morizono, T., and Yokoyama, H., “Cyclic Behavior of Steel Braces Isolated in Precast Concrete Panels---Basic Study on Small Scale Models”. Annual Symposium of Architectural Institute of Japan, (1973)). (in Japanese).
[28]Wakabayashi, M., Nakamura, T., Morino, K., Miyai, K. and Yokoyama, H., “Cyclic Behavior of Steel Braces Isolated in Precast Concrete Panels---Large Scale Model Tests”. Annual Symposium of Architectural Institute of Japan, (1973). (in Japanese).
[29] K. Inoue, S. Sawaizumi, Y., Higashibata and K. Isoue, “Bracing Design of The Concrete Panel Including Unbonded Steel Braces”, Journal of Struct. Engng. AIJ, No. 432, (1992).
[30] 李超雄,”BIB構件件在軸壓力作用下之挫屈與變形行為 ”,國立台灣工業技術學院碩士論文,八十二年。
[31] 林懿靜,”韌性斜撐構材及韌性同心斜撐構架之受力行為研究 ”,國立台灣工業技術學院碩士論文,八十四年。
[32] 陳世仰,「韌性同心斜撐系統在地震下之反應」,國立台灣工業技術學院營建工程研究所,碩士論文,1997年6月。
[33] K. Imai, N. Yasui and Y. Umezu, “Development of Tube-in-Tube FLD Bracing Member (Force Limiting Device) and It’s Implsive Analysis”, Structural Stability Research Council Proceedings, 1997 Annual Technical Session and Meeting, Toronto, Ontario, Canada, (1997).
[34] 中村博志等「Fatigue Properties of Practical-Scale Unbonded Braces」,新日鐵技報,第372號,pp. 49-55,1999年。
[35] Timoshenko, S.P., and Gere, J.M., “Theory of elastic stability,” 2nd ed. McGraw-Hill, New York., (1961)
[36]Simitses, G. J., “An Introduction to the elastic stability of structures,” Prentice-Hall,NJ., (1976)
[37] 日本土木學會,構造力學公式集,第140頁,1986年。
[38]Lui, E.M., and Chen, W.F., ,“Structural stability, Theory and Implementation ,” Elsevier Science Publishing Co., Inc. , (1987)
[39]Cofie, N. G. and Krawinkler, H., “Uniaxial Cyclic Stress-Strain Behavior of Structural Steel,” Proc. Of ASCE, Vol. 111, No. EM9, pp. 1105-1120, (1985)
[40]Dafalias, Y.F., and Popov, E.P., “Plastic Internal Variables Formalism of Cyclic Plasticity”, J. App. Mech., 43, pp. 645-650 (1976)
[41]Popov, E. P., and Peterson, H., “Cyclic metal plasticity: experiments and theory.” J. Engrg. Mech. Div., ASCE, 104(6), pp.1371-1388(1978).
[42]Tseng, N. T. and Lee, G. C.,” Simple Plasticity Model of Two-Surface Type,” Proc. of ASCE, Vol. 109, No.EM3, pp. 795-810(1983).
[43]Krawinkler, H., ”Cyclic Loading Histories for Seismic Experimentation on Structural Components”, Earthquake Spectra, Vol. 12, No. 1,. pp.1-12(1996).
[44]Suresh, S., Fatigue of Materials, 2nd Ed. Cambridge Unifersity Press, Cambridge, U.K. pp.11-18(1998).
[45]Wada, A., Twata, M. and Huang, Y. H. ”Seismic Design Trend of Tall Buildings After Kobe Earthquake,” 第十九屆中日工程技術研討會,鋼結構論文集,第13~24頁,台北,1998年。
[46]Coffin, L. F. Jr., “A study of the Effects of Cyclic Thermal Stresses on a Ductile Metal”, Transactions of the American Society of Mechanical Engineers, New York, N. Y., 76, pp.931-950.
[47]Manson, S. S., “Behavior of Materials under Conditions of Thermal Stress”, Heat Transfer Symposium, University of Michigan Engineering Research Institute, Ann Arbor, Michigan,pp. 9-75.
[48]Dowling, N.E., Mechanical Behavior of Material, Simon & Schuster Asia Pte Ltd., Singapore. pp7-9(1997).
[49]Powell, G. H., and Allagabadi,R., ”Seismic damage prediction by deterministic methods: concepts and procedures. “ Earthquake Engineering and Structural Dynamics, 16, pp.719-734(1988).
[50]Banon, H., Biggs, J. M., and Irvine, H. M.,”Seismic Damage in Reinforced Concrete Beams.” J. Struct. Div., ASCE, 107, pp.1713—1729(1981).
[51]Roufaiel, M. S. L., and Meyer, C. “Analytical modeling of hysterectic behavior of R/C frames.” J. Struct. Engrg., ASCE, 113, pp.429-444 (1987).
[52]Stephens, J. E., and Yao, J. P.,” Damage assessment using response measurements.” J. Struct. Engrg.,ASCE,113, pp.787-801 (1987).
[53]Wang, M. L., and Shah, S. P..”Reinforced Cumulative Hysteresis Model Based on The Damage Concept. “ Earthquake Engrg. And Struce.Dyn., 16, pp.719-734(1987).
[54]McCabe, S. L., and Hall, W. J.,” Assessment of Seismic Structural Damage.” J. Struct. Engrg.,ASCE,115,pp. 2166-2183 (1989).
[55]Banon H., and Veneziano, D,”Seismic Safety of Reinforced Concrete Members and Structures.” Earthquake Engrg. And Struct. Dym.,10, pp.179-193(1982).
[56]Park, Y.-J., and Ang, A, H.-S.” Mechanistic Seismic Damage Model for Reinforced Concrete.” J. Struct. Engrg., ASCE,111, pp.722-739(1985).
[57]Krawinkler, H. and Zohret, M.(1983). “Cumulative Damage in Steel structures Subjected to Earthquake Ground Motions.” Computer and Structure, 16. pp.531-541(1983).
[58]Ballio, G., and Castiglioni, C.A., “An Approach to The Seismic Design of Steel Structures Based on Cumulative Damage Criteria.” Earthquake Engrg. And Struct. Dyn., 23,pp.969-986(1994).
[59]Miner, M. A.,” Cumulative damage in fatigue.” J. Appl. Mech, 12, pp.159- 164(1954).
[60]Morrow, J. “Fatigue Properties of Metals,” Section 3.2 of Fatigue Design Handbook, Society of Automotive Engineers, (1968).
[61]Corten, H. T., “Overstressing and Understressing in Fatigue,” Metal Engineering Design, ASME Handbook, O. J. Horger, Ed., McGraw-Hill, pp.231-241(1965).
[62]Topper, T. H., Sandor, B. I., and Morrow, J., “Cumulative Fatigue Damage under Cyclic Strain Control,” Journal of Materials, Vol. 4, No. 1 ,pp.189-199(1969)
[63]Chung, Y. S., Meyer, C. and Shinozuka, M., ”Seismic Damage Assessment of RC Structures”, NCEER Report 87-0022, State University of New York at Buffalo, New York.(1987)
[64]Hall, J. F., Heaton, T. H., Halling, M. W.and Wald, D. J., “Near-source Ground Motion and Its Effects on Flexible Buildings”, Earthquake Spectra, Vol. 2, pp.569-605,(1995).
[65]Heaton, T. H., Hall, J. F., Wald, D. J., and Halling, M. W., “Response of High-rise and Base-isolated Buildings to a Hypothetical Mw 7.0 Blind Trust Earthquake”, Science, Vol. 267, (1995).
[66]Iwan, W. D., “Drift Spectrum: Measure of Demand for Earthquake Ground Motions”, Journal of Structural Engineering, Vol. 123, No. 4, pp.397-404,(1997).
[67]P. K. Malhotra, “Response of Buildings to Near-Field Pulse-Like Ground Motions”, Earthquake Engng. Struct. Dyn. 28, pp.1309-1326, (1999)
[68]黃慶東,「近斷層地震地動特性與震譜特性之探討」,結構工程,第十五卷,第二期,第91-113頁,民國八十九年。
[69]ICBO, “Uniform Building Codes,” International Conference of Building Officials, Whitter, California, (1997).
[70]Chopra, A. K., Theory and Applications to Earthquake Engineering, Prentice-Hall, Englewood Cliffs, NJ, (1995).
[71]Leelataviwat, S., Goel, S. C. and Stojadinovic, B.,”Toward Performance-Based Seismic Design of Strucyures”, Earthquake Spectra, Vol. 15, No. 3, (1999).
[72]Araia, A., A Measure of Earthquake Intensity, MIT Press, (1970).
[73]Applied Technology Council, “Tentative Provivions for the Development of Seismic Regulations for Buildings” ,ATC 3-06, (1978).
[74]Housner, G. W., “Behavior of Structures during Earthquakes”, Journal of Engineering Mechanics, ASCE, EM4, pp.109-129, (1959).
[75]Powell, G. H., “Drain-2D User’s Guide,” Report EERC No. 73-22, Earthquake Research Center, University of California, Berkely, (1973).
[76]Clough, R. W. and Penzien, J., Dynamics of Structures, McGraw-Hill, Inc. New York, pp. 235-236, (1993).
[77]Cordova, P.P., Mehanny, S.S., Deierlein, G.G. and Cornell, C.A., “Development of New Seismic Intensity Measure and Probalistic Design Procedure,” Working Paper, Dept. of Civil and Environmental Engineering, Standford University.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 楊貴蘭、高紀惠、黃慈心、施俊雄、潘璦琬(1997)‧復健護理方案對髖關節置換手術病患的自我照顧認知及活動功能進展成效之探討‧長庚護理,8(2),43-51。
2. 詹益聖、翁文能(1997)‧全人工髖關節置換術後感染的預防、診斷及治療‧當代醫學,24(2),122-126。
3. [68]黃慶東,「近斷層地震地動特性與震譜特性之探討」,結構工程,第十五卷,第二期,第91-113頁,民國八十九年。
4. 敖曼冠、梁鉑鈴(1991)‧髖關節疾患除全人工關節置換以外之其他治療方式‧國防醫學,13(1),50-54。
5. 楊文一、施俊雄(1999)‧全人工髖關節置換術最近發展趨勢‧當代醫學,26(9),721-722。
6. [20]陳正誠,「韌性同心斜撐構架與韌性斜撐構材之耐震行為與設計」,結構工程,第十五卷,第一期,民國八十九年三月,第53~78頁。
7. 戴玉慈、羅美芳(1996)‧身體功能評估的概念與量表‧護理雜誌,43(2),63-68。
8. 鍾聿琳、黃衍文(1999)‧多媒體互動式光碟對認知成就及學習態度影響之初探‧民意研究季刊,210,69 -89。
9. 鄭綺(1999)‧冠狀動脈繞道術患者最大攝氧量、自覺體能效能及生活品質之探討‧護理研究,7(6),531-541。
10. 林碧珠、莊琴英、王金蓮、陸嘉玲、林美杏(1998)‧手術前衛教對人工髖關節置換術患者之成效,榮總護理,15(3),293-302。
 
系統版面圖檔 系統版面圖檔