(3.235.11.178) 您好!臺灣時間:2021/03/07 08:35
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:蘇德利
研究生(外文):Su Te-Li
論文名稱:應用灰色關聯度於線上動態胚布瑕疵檢測系統之研製
論文名稱(外文):Design for Application of Grey Relational Analysis to On-Line Cloth Defect Inspecting System
指導教授:郭中豐郭中豐引用關係
指導教授(外文):Kuo Chung-Feng
學位類別:碩士
校院名稱:國立臺灣科技大學
系所名稱:纖維及高分子工程系
學門:工程學門
學類:紡織工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:66
中文關鍵詞:灰色關聯分析小波轉換共生陣矩模糊理論
外文關鍵詞:Grey relational gradeWavelet TransformCo-occurrence MatrixFuzzy Theory
相關次數:
  • 被引用被引用:2
  • 點閱點閱:281
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
本論文旨在發展一套線上胚布瑕疵檢驗系統,以利用小波轉換(wavelet transformations)、灰階度共生矩陣(gray-level co-occurrence matrix)抽取織物瑕疵影像的特徵值,再利用灰色理論(grey theory)之灰色關聯度分析(grey relational grade analysis)來進行織物瑕疵的分類。主要針對常見的缺經、缺緯、破洞、油污及蛛網瑕疵,進行辨識分類研究。灰色關聯度分析(grey relational grade analysis)可在選定的特徵指標中,對所要分析研究的各因素,透過一些數據處理,在隨機的因素序列間,找出它們的關聯性,依關聯度最高者為其所判斷之瑕疵。同時以模糊控制理論設計模糊控制器使胚布表面張力維持一致性,提高胚布瑕疵的辨識率並增加驗布效率,使系統能擁有較高的執行效率。
在軟體設計上,以Visual C++及MFC(microsoft foundation class)類庫整合發展環境作為軟體開發工具,開發平台則使用Microsoft Windows作業系統;胚布張力控制模組,則由荷重感測器(load cell)搭配A/D、D/A訊號轉換卡和兩組變頻器負責直接對喂入與捲取羅拉作調控,進而控制胚布張力及傳送速度。實驗結果顯示,各以40張瑕疵樣本做線上檢驗,總辨識率為92.5%,成效非常良好。
The purpose of this thesis is to develop a set of on-line cloth-defect inspecting system, so as to seek the feature values of the cloth defect image through the use of wavelet transformations and gray-level co-concurrence matrix. As a follow-up, the cloth defects will be classified by applying the grey relational grade analysis of the grey theory. The main task is to identify the classification research for the spider weave, holes, oil stains, broken warps and broken wefts that are commonly seen. During the grey relational grade analysis, the relativity of factors to be analyzed and researched can be located from the random factor serial through data processing in the selected feature indicators. By this way, the one having the highest relativity will be the judged defect. In the meantime, the fuzzy theory will be used to design a fuzzy controller in maintaining consistent tension on the cloth surface so as to elevate the identification rate of cloth defects and enhance the cloth inspection efficiency. In this way, the system may be provided with higher performance efficiency.
In the software design, the Visual C++ and MFC (Microsoft Foundation Class) will be used as the software developing tool while the Microsoft Windows operating system will be used for the platform development. By using the load cell in conjunction with A/D, D/A signal conversion card and two units of frequency changers, the cloth tension control module will directly adjust the feeding and rolling rollers so as to control the cloth tension and its conveying speed. The test result indicated a very satisfactory 92.5% of total identification rate when using 40 sheets of defective samples for the on-line inspection.
中文摘要 ..............................I
Abstract ..............................II
誌謝 ..............................III
目錄 ..............................IV
圖表目錄 ..............................VI
第1章 緒論 .....................1
1.1 研究動機 .....................1
1.2 文獻回顧 .....................2
1.3 研究方法簡介 .................4
1.4 論文架構 .....................5
第2章 相關背景知識 .................7
2.1 臨界值法 .....................7
2.2 小波轉換法 ...................8
2.3 灰階度共生矩陣 ...............14
第3章 灰色關聯度分析 ...............20
3.1 灰色關聯概念 .................20
3.1.1 定義 .....................20
3.2 灰色關聯分析方法 .............22
3.2.1 灰關聯係數 ...................23
3.2.2 辨識係數 .....................24
3.2.3 灰色關聯度計算步驟 ............25
第4章 模糊控制器 ...................30
4.1 模糊控制理論 .................30
4.1.1 模糊理論 .....................31
4.1.2 模糊集合關係 .................32
4.1.3 模糊推論 .....................32
4.1.4 模糊控制器架構 ...............33
第5章 實驗結果與討論 ...............36
5.1 硬體架構 .....................36
5.1.1 驗布辨識系統檢測模組設備 .....37
5.1.2 驗布辨識系統張力控制模組設備 .38
5.2 胚部瑕疵檢測 .................40
5.3 張力控制 .....................57
第6章 結論與未來工作 ...............60
參考文獻 ..............................62
附錄 本研究之實驗模組 .................66
實驗模組前視圖 .....................66
實驗模組側視圖(一) ...................66
實驗模組側視圖(二) ...................67
1. Bradshaw, M., “The Application of Machine Vision to The Automated Inspection of Knitted Fabrics.”, Mechatronics, vol.5, no.2-3, pp.233-43. UK, 1995.
2. Chan, C. H., Pang, GKH., “Fabric Defect Detection by Fourier Analysis.”, IEEE Transactions on Industry Applications, vol.36, no.5, pp.1267-76. Publisher: IEEE, USA, 2000.
3. Chen, P. W., Chun, L. T., and Yauetc, H. F., “Classifying Textile Faults with a Back-Propagation Neural Network Using Power Spectra”, Textile Research Journal, vol. 68 no. 2, pp.121-126, 1998.
4. Choonjong, K., Ventura J. A.,and Tofang, S. K., “Automated Defect Inspection and Classification of Leather Fabric.”, Intelligent Data Analysis, vol.5, no.4, Publisher: IOS Press, Netherlands, pp.355-70, 2001.
5. Costellini, C., Francini, F. and Longobardi, G. B., “On-Line Textile Quality Control Using Optical Fourier Transforms”, Optics and Lasers in Engineering, pp.19-32, 1996.
6. Haralick, R. M., Shanmugam, K., and Dinstein, I., “Textural Features for Image Classification” , IEEE Trans. Systems Man and Cybernetics, vol. 3, pp.610-621, 1973.
7. Salari, E., and Ling, Z., “Texture Segmentation Using Hierarchical Wavelet Transform”, Industrial Electronic, vol.1, pp.216-220, 1995.
8. Hu, M. C., and Tsai, I. S., “Fabric Inspection Based on Best Wavelet Packet Bases”, Textile Research Journal, vol. 70, no. 8, pp.662-670, 2000.
9. Wang, C., and Huang, S. Z., “A Refined Flexible Inspection Method for Identifying Surface Flaws Using the Skeleton and Neural Network”, INT. J. PROD. RES., vol. 35, no. 9, pp2493-2507, 1997.
10. Ribolzi, S., Merckle, J., “Real-Time Fault Detection on Textiles Using Opto-Electronic Processing”, Textile Research Journal, pp.123-130, 1995.
11. Yoshia Schimizu, Tadashi Ishikawa, Takao Furukawa, “Expert System to Inspect Fabric Defects by Pattern Recognition”, SEN-1 GAKKAISHI, vol. 46, no. 10, pp.460-469, 1990.
12. Ahmet, A. L., Ertuzun, A., and Ercil, A., “Texture Defect Detection Using Subband Domain Co-Occurrence Matrices”, Image Analysis and Interpretation, vol.1, pp.205-210, 1998.
13. King, T. G. and Tao, L. G., “An Incremental Real-Time Pattern Tracking Algorithm for Line-Scan Camera Application”, Mechatronics, vol. 4, no. 5, pp. 503-516, 1994.
14. Hsu, Y. T., Lin, C. B., Mar, S. C., and Su, S. F., “High Noise Vehicle Plate Recognition Using Grey System”, The Journal of Grey System, vol. 3, pp.193-208, 1998.
15. Deng, J. L., “Control Problems of Grey Systems”, Systems and Control Letters, pp.288-294, 1998.
16. 曹軍、胡萬義,「灰色系統理論與方法」,東北林業大學出版社,哈爾濱市,1993.
17. Pang, K.H., and Mesbah, S. A., “Design of Bang-Bang Controller Based on a Fuzzy-neuro Approach,” Proceedings of the IEEE International Symposium on Computer-Aided Control System Design, 96th, 8136. pp.1-6, 1996.
18. Surmann, H., “Genetic Optimization of a Fuzzy System for Charging Batteries,” IEEE Transactions on Industrial, v 43, n5, pp.541-548, Oct 1996.
19. Wu, Q.M., and Silva, C.W., “Model Identification for Fuzzy Dynamic System,” Proceeding of the American Control Conference San Francisco, California, pp.2246-2247, June 1993.
20. Zimmerman H. J., “Fuzzy Set Theory and Its Applications,” Second edition, pp.201-215, 1991.
21. Y. Nievergelt, “Wavelets Made Easy”, Birkauser, Boston, 1999.
22. Haralick, R. M., “Statistical and Structural Approaches to Texture”, Proc. of the IEEE, 67(5), pp.786-804, 1979.
23. Pratt, W. K. 1991. “Digital Image Processing.” John Wiley & Sons, Inc.
24. Deng Julong, “Control Problems of Grey System”, Systems and Control Letters, vol. 1, pp. 288-294, 1982.
25. 曹軍、胡萬義,“灰色系統理論與方法”,東北林業大學出版社,哈爾濱市,1993.
26. Deng, J. L., “Introduction to Grey Systems Theory”, The Journal of Grey System, 1(1), pp.49-54, 1989.
27. Deng, J. L., “The Journal of Grey System”, International Academic Publishers, 1982.
28. 鄧聚龍,“灰色系統基本方法”,華中理工大學出版社,武昌市,1987.
29. 江金山、吳佩玲、蔣祥第、張廷正、詹福賜、張軒庭、溫坤禮合著,“灰色理論入門”,高力圖書股份有限公司,台北,1998.
30. 劉思峰、郭天榜,“灰色系統理論及其應用”,河南大學出版社,開封市,1991.
31. Hong, G., “Identification Coefficient of Relational Grade of Grey Systems”, Fuzzy Mathematics, 2, pp. 55-58, 1985.
32. Shi, K. Q., “Grey Relation Theory and its Applications”, ISUMA90, U.S.A.
33. 鄧聚龍、郭洪,“灰預測原理與應用”,全華科技公司,1996.
34. Gan, P., and Ye, X., “Grey Analysis of Atmospheric Environment Quality”, The Journal of Grey System, vol. 2, pp.197-202, 1996.
35. Zhai, G., “Grey Relational Analysis the Water Quality”, The Journal of Grey System, vol. 4, pp.359-368, 1995.
36. Zheng, Q., “The Application of Grey Analysis to Thermal Island Effect in Fuzhou”, The Journal of Grey System, vol. 3, pp.291-294, 1996.
37. Zhu, F., Yi, M., Ma, L., and Du, J., “The Grey Relational Analysis of the Dielectric Constant and Others”, The Journal of Grey System, vol. 3, pp.287-290, 1996.
38. 王進德、蕭大全編著,“類神經網路與模糊控制理論入門”, 全華科技公司, 1994.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔