(3.231.29.122) 您好!臺灣時間:2021/02/25 22:40
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:紀天佑
研究生(外文):Tian-Yow Chi
論文名稱:社群網站行銷經營管理模式之研究-以ASP程式交流社群為例
論文名稱(外文):The Research of Marketing and Operating Management Model on Web Community: ASP Community as the Example
指導教授:黃燕忠黃燕忠引用關係
指導教授(外文):Yann-Jong Hwang
學位類別:碩士
校院名稱:中國文化大學
系所名稱:資訊管理研究所
學門:電算機學門
學類:電算機一般學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:86
中文關鍵詞:社群網站行銷系統資料探勘
外文關鍵詞:Web CommunityMarketing SystemData Mining
相關次數:
  • 被引用被引用:12
  • 點閱點閱:1149
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:349
  • 收藏至我的研究室書目清單書目收藏:14
近年來網路的幻滅,體質不佳或對市場反應過慢的企業網站紛紛倒閉,存留的網站經營者必須積極地調整營運模式、重新識別本身的定位、建立差異價值及成功關鍵因素,主要目的是期望經營網站能開源節流,獲得對企業的實質收益。就社群網站而言,為了達成上述目的就必須投入大量的時間及成本,充實網站內容,先凝聚人氣提高集客力,再鞏固使用者的忠誠度,才能有獲利的機會。但是,若無有效的網站經營管理模式,則建置網站內容的營運成本將難以估計;而且,若無即時性的行銷活動資訊服務客戶提昇網站的集客力與忠誠度,則獲利目標也難以達成;因此,如何有效地從大量資料中擷取出不明顯、事前未知且可能有用的行銷資訊,成為網站經營極為重要的關鍵之一。為了解決上述的關鍵問題,本研究是以塑模法(STATEMATE),先規劃一套社群網站行銷經營管理模式(Web Community Marketing and Opera-tion management model, 簡稱WCMO),再應用資料探勘(data mining)技術於社群網站的活動中,最後再經由本研究的資料分析模組、追蹤促銷活動的回應資訊,使能夠評估該促銷活動的結果,提供管理者進行行銷決策的參考。本研究除了基礎理論探討外,也實際將本模式導入於ASP程式交流社群網,真正依本研究所提出的WCMO管理模式,開發應用系統,不但能自動累積資料,而且能應用資料探勘技術進行線上促銷活動,研究結果顯示行銷成效相當良好,未來還可以此模式繼續發展成為社群知識管理系統。
The beautiful dream of Internet company was disillusioned in recent years. Many websites were forced to close down due to their sloppy infrastructure and slow marketing response. Those webmasters who survived have to aggressively readjust their business model & market position and to establish unique character & critical suc-cessful factors to broaden sources of income and reduce expenditure, and consequently bring real profits to the enterprise. In terms of Web Community, it takes tremendous time and cost to have appealing content to attract substantial hit rate and gain users loy-alty to make profit. However, it is very important to have a powerful and efficient management model to achieve those goals, otherwise the operation cost is inestimable. In addition, providing prompt service information to meet consumer demand is another key factor to gain hit rate and users loyalty to make profit. Therefore, how to effec-tively retrieve useful marketing information from mass database, unknown and poten-tially data, is a significant factor to accomplish a successful website. To solve the above significant problems, this research proposed a Web Community Marketing and Opera-tion management model (WCMO) by STATEMATE method, in combination of data mining method to retrieve Web Community information and on-line track feedback of promotional messages to the database, and run the data analysis module to analyze and evaluate the result as the valuable information in scheming further marketing strategies. This research not only probes into basic theoretical analysis, but also applies in a real case http://asp.database.net.tw/ a web community of ASP programmers. Based on this WCMO management model, we implement an application system, which can accumu-late a lot of data and apply data mining method in on-line marketing promotion. The results of this research reveal excellent efficiency and effectiveness. The extended ap-plication of this specific model could be developed into a community knowledge man-agement system.
中文摘要 ..................... iii
英文摘要 ..................... v
誌謝辭 ..................... vi
內容目錄 ..................... vii
表目錄 ..................... ix
圖目錄 ..................... x
第一章 緒論................... 1
第一節 研究動機............... 1
第二節 研究目的............... 2
第三節 研究架構............... 3
第四節 研究結果............... 5
第二章 文獻探討................. 6
第一節 虛擬社群............... 6
第二節 行銷系統............... 21
第三節 資料探勘............... 23
第三章 模式概述及設計.............. 27
第一節 模式概述............... 27
第二節 行銷管理............... 35
第三節 模式設計............... 43
第四章 模式應用及評估.............. 50
第一節 ASP 程式交流社群-藍色小舖...... 50
第二節 現況分析............... 51
第三節 導入模式的功能概念應用........ 53
第四節 模式成效分析............. 63
第五章 結論及未來展望.............. 71
參考文獻 ..................... 73
附錄A APRIORI演算法............... 80
附錄B ID3演算法................. 81
附錄C WCMO模式資料模組規劃表 .......... 82
附錄D 促銷郵件成效統計檢定 ........... 83
附錄E 發表論文一 ................ 85
附錄F 發表論文二 ................ 86
Abraham, M. M., & Lodish, L. M. (1990). Getting the most out of advertising and promotion. Harvard Business Review, 68(3), 50-60.
Agrawal, R., & Srikant, R. (1994). Fast Algorithms for mining association rules in large databases. In J. B. Bocca, M. Jarke, & C. Zaniolo (Eds.), Proceedings of the 20th Int’l Conference on Very Large Databases (pp. 487-499), Chile: Morgan Kaufmann.
Alt, B. (2000). Laying the community foundation [Online]. Available: http://epdigest.com/articles/community/20001025 [2000, October 25]
Bechmann, D., Elfrink, J., & Vazzana, G. (1996). Tracking the progress of e-mail vs. snail-mail. Marketing Research: A Magazine of Management & Applications, 8(2), 30-35.
Berger, P. D., & Nada, I. N. (1998). Customer lifetime value: Marketing models and application. Journal of Interactive Marketing, 18(1), 17-30.
Berson, A., Smith, S., & Thearling, K. (2000). Building data mining applications for CRM. New York: McGraw-Hill.
Blattberg, R. C., & Deighton, J. (1991). Interactive marketing: Exploring the age of address ability. Sloan Management Review, 33(1), 5-14.
Chien, L.F. (1997). PAT-tree-based keyword extraction for Chinese information retrieval [Online]. Available: http://portal.acm.org/ citation.cfm?doid=258525.258534 [No date]
Chris, M., Miriam, M., Kevin, O., & Ashok, G. (1999) Making real sense of virtual community [Online]. Available: http://www.pwcglobal.com/extweb/indissue.nsf/2e7e9636c6b92859852565e00073d2fd/969e34662e87ccd785256870007c3bcc/$FILE/Virtual+Communities.pdf [No date].
Duboff, R. S. (1992). Marketing to maximize profitability. The Journal of Business Strategy, 13(6), 10-13.
Ha, H. S., & Prak, S. C. (1998). Application of data mining tools to hotel data mart on the intranet for database marketing. Expert Systems with Applications, 15(1), 1-31.
Hagel, J. III., & Armstrong, A. G. (1997). Net gain: Expanding markets through virtual communities. Boston, Massachusetts: Harvard Business School Press.
Han, J., & Kamber, M. (2000). Data mining concepts and techniques. San Francisco: Morgan Kaufmann.
Han, J., Pei, J., & Yin, Y. (2000). Mining frequent patterns without candidate generation [Online]. Available: http://citeseer.nj.nec.com/cache/papers/cs/12248/ftp:zSzzSzftp.fas.sfu.cazSzpubzSzcszSzhanzSzkddzSzsigmod00.pdf/han99mining.pdf [No date].
Harel, D., Lachover, H., Naamad, A., Pnueli, A., Politi, M., Sherman, R., Shtull-Trauring, A., & Trakhtenbrot, M. (1990). STATEMATE: A working environment for the development of complex reactive systems. IEEE Transactions on Software Engineering, 16(4), 403-414.
Hendriks, P. (1999). Why share knowledge? The influence of ICT on motivation for knowledge sharing. Knowledge and Process Management, 6(2), 91-100.
Hidding, G., & Shireen, M. C. (1998). Anatomy of a learning organization: Turning knowledge into capital at Andersen Consulting. Knowledge and Process Management, 5(1), 3-13.
Jim, S. (1997). What makes people click: Advertising on the web. Indianapolis, Indiana: Que Corporation, 323-350.
Kaufman, L. & Rousseeuw, P. J. (1990). Finding groups in data: An introduction to cluster analysis. New York: John Wiley & Sons.
Kotler, P. (1998). Marketing management: Analysis, planning, implementation and control (9th ed.). New Jersey: Prentice-Hall.
Kotler, P., & Armstrong, G. (1999). Principles of marketing (8th ed.). New Jersey: Prentice-Hall.
Li, E. Y., Chen, H. G., & Roan, J. S. (2001). Marketing information system usage in Taiwan’s top 1000 companies. Journal of Computer Information Systems, 41(2), 85-94.
Li, E. Y., McLeod, R. Jr., & Rogers, J. C. (1993). Marketing information systems in the Fortune 500 companies: Past, present, and future. Journal of Management Information Systems, 10(1), 165-192.
Lockett, A., Holland, C., Blackman, I. D., & Naude, P. (1999). Using the www as a medium for marketing research in financial services: The case of xenon laboratories [Online]. Available: http://www.computer.org/proceedings/hicss/0001/00015/00015004.PDF [No date].
MacQueen, J. B. (1967). Some methods for classification and analysis of multivariate observations, In L. M. L. Cam & J. Neyman (Eds.), Proceedings of 5th Berkeley Symposium on Mathematical Statistics and Probability (pp. 281-297), Berkeley, California: University of California Press,
McCarthy, E. J. (1990). Basic marketing: A managerial approach. Homewod Illinois: Richard d. Irwin, Inc.
Mulhern, F. J. (1999). Customer profitability analysis: Measurement, concentration, and research directions. Journal of Marketing Research, 13(1), 25-40.
Ng, R. & Han, J. (1994). Efficient and effective clustering method for spatial data mining [Online]. Available: http://www.datamining.org.tw/doc/clustering/Efficient%20and%20Effective%20Clustering%20Methods%20for%20Spatial%20Data%20Mining%2094.ps [No date].
Nonaka, I., & Takeuchi, H. (1995). The knowledge-creating company. New York: Oxford University Press, Inc.
Nunamaker, J. R., Chen, J. F., & Purdin, T. D. M. (1991). Systems development in information systems research. Journal of Management Information Systems, 7(3), 89-106.
Piatesky-Shapiro, G., & Frawley, W. J. (1991). Knowledge discovery in database. Cambridge, Massachusetts: AAAI/MIT Press.
Pride, W. M., & Ferrell, O. C. (1983). Marketing: Basic concepts and decisions. Boston: Houghton Mifflin Co, 9.
Quinlan, J. R. (1986). Induction of decision trees. Machine Learning, 1(1), 81-106.
Romm, C., Pliskin, N., & Clarke, R., (1997). Virtual communities and society: Toward an integrative three phase model. International Journal of Information Management, 17(4), 261-270.
Ror, G. (1997) Facilitation: The CoiL FAQ on roles and responsibilities [Online]. Available: http://www.co-i-l.com/coil/ knowledge-garden/vcfaq/facfaq1.shtml [No date].
Sforna, M. (2000). Data mining in a power company customer database. Electric Power System Research, 55(3), 201-209.
Shaw, M. J., Subramaniam, C., Tan, G. W., & Welge, M. E. (2001). Knowledge management and data mining for marketing, Decision Suppoer Systems, 31(1), 127-137.
Stanton, W. J. (1981). Fundamentals of marketing. New York: McGraw-Hill, 4.
Struse, D. (2000). Marketing research’s top 25 influences. Marketing Research, 11(4), 4-9.
Tampoe, M. (1993). Motivating knowledge workers─The challenge for the 1990s. Long Range Planning, 26(3), 49-55.
Wendell, R. S. (1956). Product differentiation and market segmentation as alternative marketing strategies. Journal of Market, 21(1), 3-8.
Wijnhoven, F. (1998). Knowledge logistic in business contexts: Analyzing and diagnosing knowledge sharing by logistics concepts. Knowledge and Process Management, 5(3), 143-157.
Williams, R., & Cothrel, J. (2000). Four smart ways to run online community. Sloan Management Review, 41(4), 81-91.
Wyner, G. A. (1996). Customer valuation: Linking behavior and economics. Marketing Research: A Magazine of Management and Application, 8(2), 36-38.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 56.蔡信章,美國勞資爭議仲裁制度之研究-兼論我國相關法規應有之發展,中國文化大學勞工研究所碩士論文,1996年12月。
2. 1.丁嘉惠,不當勞動行為規範之研究,中國文化大學勞工研究所碩士論文,1994年6月。
3. 86.蘇永欽,財產權的保障與大法官解釋,憲政時代第42卷第3期,1998年12月。
4. 85.魏朝光,爭議行為正當性──從日本的觀念與作法談起,勞工研究季刊第97期,1989年10月。
5. 81.謝棋楠,團體協約終了之研究,勞工研究季刊,第104期,1991年11月。
6. 80.鄧學良,我國團體協約之評議-兼論中鋼團體協約,政大勞動學報第8期,1999年5月。
7. 79.鄧學良,我國工會法制與上級工會組織原理之評議,政大勞動學報第6期,1997年9月。
8. 75.蔡維音,德國基本法第一條「人性尊嚴」規定之探討,憲政時代第18卷第1期,1992年7月。
9. 74.蔡茂寅,工作權保障與勞動基本權的關係及其特質,律師雜誌219期,1997年12月。
10. 73.蔡炯燉,制定勞工訴訟程序法之必要性,勞資關係月刊第18卷第6期,1999年10月。
11. 70.劉梅君,工時與企業競爭力-解除管制與彈性化的反思,月旦法學雜誌第77期,2001年10月。
12. 69.劉邦棟,正當性爭議行為之法律保護,勞工之友,第558期,1997年6月。
13. 67.劉志鵬,民法債篇修正對勞動契約關係之影響,法令月刊,第50卷10期,2000年10月。
14. 66.劉志鵬,談勞基法上的「經常性給與」,月旦法學雜誌,第8期,1995年12月。
15. 65.劉士豪,勞動訴訟程序之研究,憲政時代,第17卷第2期,1991年10月。
 
系統版面圖檔 系統版面圖檔