跳到主要內容

臺灣博碩士論文加值系統

(44.200.82.149) 您好!臺灣時間:2023/06/05 11:43
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:柯迪成
研究生(外文):Dei-Cherng Ke
論文名稱:多醣-明膠複合薄膜物性之探討
論文名稱(外文):Studies on the physical properties of complex films prepared from polysaccharides and gelatins
指導教授:賴鳴鳳張永和張永和引用關係
指導教授(外文):Min-Feng LaiYung-Ho Chang
學位類別:碩士
校院名稱:靜宜大學
系所名稱:食品營養研究所
學門:醫藥衛生學門
學類:營養學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:65
中文關鍵詞:薄膜明膠多醣
外文關鍵詞:filmgelatinpolysaccharide
相關次數:
  • 被引用被引用:7
  • 點閱點閱:840
  • 評分評分:
  • 下載下載:115
  • 收藏至我的研究室書目清單書目收藏:0
本研究乃探討食品多醣結構對其與明膠複合薄膜之水溶性、耐折疊性
、動態黏彈性及FTIR結構指紋之影響。在水溶性方面,多醣複合酸萃明膠(GA)成膜後,可溶性固形物量會明顯增加最多者為馬鈴薯澱粉(PS)和ι-紅藻膠(ι-carr),會明顯降低者為λ-carr和甲基纖維素(CMC)。而改複合鹼萃明膠(GB)時可溶性的變化部分不同於上述,以CMC系統的溶解度上升最多,而λ-carr者仍降低最大。隨著浸漬時間之增加,可溶性多醣/明膠比例隨而降低,意味明膠較多醣易於溶出。基本上,大部分的單純多醣薄膜較明膠耐折疊,尤其是褐藻酸丙二酯(PGA)。但大部份多醣-明膠複合後耐折疊性明顯降低,唯PGA、褐藻膠(Alg)及CMC在適當低濃度下可維持良好的耐折疊性。以動態機械頻譜分析結果顯示,多醣-明膠複合薄膜之損耗正切大致上會比單純系統的低,顯示在非破壞性條件下複合處理有提高生聚合物膜彈性之優點。以FTIR分析結構指紋探討多醣與明膠複合後官能基 (OH, amide, carboxylic group and glycosidic acid)之波數變化。多數多醣之OH 波數在與明膠複合後朝低低波數移動,而其他官能基的波數變化在樣品間則無明顯系統性改變。
Effects of food polysaccharide structure on the water solubilities, folding and mechanical properties and fourier transform infrared (FTIR) spectral characteristics of polysaccharide-gelatin complexes films were studied. It is indicated that when polysaccharides formed films with acid-treated gelatin (GA), the total water soluble content might increase to a level that was remarkable for potato starch and ι-carrageenan or reduce significantly for λ-carrageenan (λ-carr) and carboxymethyl cellulose (CMC). When alkali-treated gelatin (GB) was used instead, different results from the above for GA included that the total soluble content of the CMC complex increased and that of λ-carr decreased the most. The weight ratio of polysaccharide to gelatin in soluble material reduced with soaking time in water, suggesting that the gelatins were more readily soluble than the polysaccharides. Basically, pure polysaccharide films, especially propylene glycol alginate (PGA), could endure more times of folding than did their complex films. Most of polysaccharides and gelatins had a significantly reduced folding resistance after complexation, except that the complexes of PGA, alginate (Alg) and CMC still remained good folding resistances. The results of dynamic mechanical measurements showed that the loss tangent (tan δ) values of the complex films were lower than those of pure polysaccharide films, indicating that complexing with gelatin could enhance the elasticity of polysaccharide films that were detected with negligible interference. The structural fingerprints of polysaccharide-gelatin complexes by FTIR implied that the absorption wavenumbers for OH, amide, carboxylic group and glycosidic acid groups varied when complexing, where the signal for OH group shifted to a lower wavenumber after complexing with gelatin, but those for amide, carboxylic group and glycosidic linkage did not shift systematically between polysaccharide samples.
中文摘要-----------------------------------------------------------------------------------Ⅰ
英文摘要----------------------------------------------------------------------------------Ⅱ
目錄----------------------------------------------------------------------------------------Ⅳ
圖目錄---------------------------------------------------------------------------------------Ⅴ
表目錄--------------------------------------------------------------------------------------Ⅵ
前言-------------------------------------------------------------------------------------- 1
文獻回顧-------------------------------------------------------------------------------- 3
一、可食性薄膜之組成-------------------------------------------------------------- 3
二、複合薄膜之加工與檢測---------------------------------------------------------3
材料與方法-----------------------------------------------------------------------------15
一、實驗材料-------------------------------------------------------15
二、實驗架構-------------------------------------------------------16
三、實驗方法-------------------------------------------------------17
(一)製備薄膜----------------------------------------------------17
1. 耐摺疊性試驗---------------------------------------------------------------17
2. 水溶性實驗------------------------------------------------------------------17
3. 動態黏彈性分析------------------------------------------------------------17
4. 傅立葉轉換紅外線光譜分析---------------------------------------------17
(二)理化性質測定----------------------------------------------------------------19
1.溶出率測定------------------------------------------------------------------19
A. 固形物溶出率---------------------------------------------------------19
B. 蛋白質溶出率---------------------------------------------------------20
2. 耐摺疊性試驗---------------------------------------------------------------20
3. DMA分析-------------------------------------------------------------------20
4. FTIR分析--------------------------------------------------------------------21
5. 數據分析---------------------------------------------------------------------21
結果與討論-------------------------------------------------------------22
一、 水溶性分析--------------------------------------------------22
二、 生聚合物薄膜折疊性質分析-----------------------------------26
三、 動態黏彈性分析-------------------------------------------------------28
四、 結構指紋分析----------------------------------------------------------------30
結論---------------------------------------------------------------------58
參考文獻----------------------------------------------------------------60
Alan I. 1992. Thickening and gelling agents for food. Blackie academic
& professional. United Kingdom.
Baumberger S, Lapierre C, Monties B, Lourdin D, Colonna P. 1997.
Preparation and properties of thermally moulded and cast
lignosulfonates-starch blends. Industrial Crops and Products 6(3-4):
253-258.
Baumberger S, Lapierrie C, Monties B, Della Valle G. 1998. Use of Kraft
lignin as filler for starch films. Polym degradation stab 59(1-3):273-277.
Bigi A, Bracci B, Cojazzi G, Panzavolta S, Roveri N. 1998. Drawn gelatin
films with improved mechanical properties. Biometerials 19:2335-2340.
Clark AH. 1992. Gels and gelling. In: Hartel RW, Schwartzberg HG editors.
Physical Chemistry of Food. New York: Marcel Dekker, Inc. p 263-305.
Debeaufort F, Quezada-Gallo JA, Voilley A. 1998. Edible films and
coatings: tomorrow’s packagings: a review. Cri Rev Food Sci 38(4): 299-313.
Gonall AG, Bardawill CS, David MM. 1919. J Boil Chem 117: 751.
Ha TT, Padua GW. 2002. Effect of extrusion processing on properties of
zein-fatty acids sheets. Transactions of the ASAE 44 (5) 1223-1228.
Harris P. 1990. Food gel. Elsevier science publishing Co. Inc. USA.
Koskinen M, Suortti T, Autio K, Myllarinen P, Poutance K. 1996. Effect of
pretreatment on the film forming properties of potato and barley starch dispersion. Industrial Crops and Products 5(1): 23-34.
Lazaridou A, Biliaderis CG. 2002. Thermophysical properties of chitosan,
chitosan-starch and chitosan-pullulan films near the glass transition.
Carbohydr Polym 48: 179-190.
Lii CY, Tomasik P, Zaleaka H, Liaw SC, Lai VMF. 2002. Carboxymethyl
cellulose-gelatin complexes. Carbohydr Polym 50: 19-26.
Lii CY, Liaw SC, Lai VMF, Tomasik P. 2002. Xanthan gum-gelatin
complexes. Eur Polym J 38: 1377-1381.
Lourdun D, Coignard L, Bizot H, Colonna P. 1997. Influence of
equilibrium relative humidity and plasticizer concentration on the water content glass transition of the starch materials. Polymer 38(21):
5401-5406.
Lourdin D, Valle GD, Colonna P. 1995. Influence of amylose content on
Starch films and foams. Carbohydr Polym 27: 261-270.
Milojevic S, Newton JM, Cummings JH, Gibson GR, Botham RL, Ring SG,
Stockham M, Allwood MC. 1996. Amylose as a coating for drug
delievery to the colon: Preparation and in vitro evaluation using 5-aminosalicylic acid pellets. J Control Release 38(1): 75-84.
Morillon V, Debeaufort F, Blond G, Capelle M, Voilley A. 2002. Factors
affecting the moisture permeablity of lipid-based edible films: a review. Crit Rev Food Sci Nutri 42 (1) : 67-89.
Parris N, Dickey LC, Kurantz MJ, Moten RO, Craig JC. 1997. Water vapor
permeability and solubility of zein/starch hydrophilic films prepared from
dry milled corn extract. 1997. J. Food Eng 32(2): 199-207.
Phan The D, Debeaufort F, Peroval C, Despre D, Courthaudon JL, Voilley A.
2002. Arabinoxylan-lipid-based edible films and coatings. III. Influence
of drying temperature on film structure and functional properties. J Agri Food Chem 50 (8) : 2423-2428.
Phillips GO, Williams PA. 2000. Handbook of hydrocolloids. Woodhand
publishing limited. Combridge England. United Kingdom.
Ratto JA, Stenhourse PJ, Auerbach M, Mitchell J, Farrell R. 1999.
Processing performance and biodegradability of a thermoplastic aliphatic
polyester/starch syatem. Polymer 40(24): 6777-6788.
Rindlav-Westling Å, Hulleman SHD, Gatenholm P. 1997. Formation of
starch films varying crystallinity. Carbohydr Polym 34(1-2): 25-30.
Rindlav-Westling Å, Stading M, Hermansson AM, Gatenholm P. 1998.
Structure, mechanical and barrier properties of amylose and amylopectin films. Carbohydr Polym 36: 217-224.
Shih FF. 1996. Edible films from rice protein concentrate and pullulan.
Cereal Chem 73(3): 406-409.
Skoog DA , Leary JJ. 1992. Principles of Instrumental Analysis. 4th ed.
Saunders College Pub. NewYork. United States.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top