(44.192.112.123) 您好!臺灣時間:2021/03/08 14:43
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:田志仁
研究生(外文):Jr-Ren Tien
論文名稱:台灣淡水河流域與二仁溪河水中酵母菌菌相調查及其生態分析
論文名稱(外文):The distribution of yeast flora in Tamshui River and Er-Jen River of Taiwan and its relationship with various water properties
指導教授:汪碧涵汪碧涵引用關係
指導教授(外文):Pi-Han Wang
學位類別:碩士
校院名稱:東吳大學
系所名稱:微生物學系
學門:生命科學學門
學類:微生物學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:275
中文關鍵詞:酵母菌分類微生物相生物歧異度河川生態群聚結構指標生物河川污染
外文關鍵詞:yeast taxonomymicrobial floradiversityriver ecologycommunity structurebiological indexriver pollution
相關次數:
  • 被引用被引用:6
  • 點閱點閱:328
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:2
中文摘要
本研究之目的在於探討台灣淡水河與二仁溪中,酵母菌菌相之多樣性與水質因子與其群聚結構之關係。淡水河流域主要受到都市與工業污水之污染,二仁溪則是以畜牧業與工業污水為主要污染源。本研究分別於2000年8月與9月採集兩條河川的河水樣本,總計分離酵母菌329株,以ITS區域限制片段多型性(RFLP)、傳統形態鑑定與Biolog菌種鑑定系統及其所提供之碳源利用能力測試,分析136株代表菌株,將酵母菌分為35個菌群,並鑑定出11屬22種,其中9種屬於台灣新紀錄種。根據二條河川各菌種之分佈與密度,比較酵母菌之群聚結構發現,淡水河不同採樣點間的酵母菌群聚結構相似度比二仁溪高。這兩條不同污染型態河川的主要酵母菌種類不同,但是均以廣泛分佈於受污染水體之Candida屬為主。分析酵母菌群聚結構與水質因子多項變數間之關係,顯示在淡水河,酵母菌歧異度與BOD顯著相關(p<0.05),可能致病酵母菌歧異度與COD、NH3-N與污染程度顯著相關。淡水河之酵母菌歧異度,隨著河水之污染程度加重而提高。在二仁溪,總酵母菌與可能致病酵母菌歧異度則與汞、鋅之離子濃度相關。兩條河川的部分菌種亦發現與水質因子具有相關性,例如在淡水河Candida tropicalis與總細菌密度和大腸桿菌群密度相關,在二仁溪Candida parapsilosis則與汞離子濃度相關。綜合以上結果顯示,酵母菌之Hill、Shannon-Weaver、Simpson與McIntosh等種豐富度指數與河川水質例如BOD與汞離子濃度等因子具有相關性。
Abstract
This study reported the yeast diversity in the water of two rivers of Taiwan, Tamshui river and Er-Jen river. Tamshui river was polluted by urban sewage, and Er-Jen riner was mainly polluted by the wastewater of intensive animal feedlots. Yeasts were isolated and their density was estimated. There were 35 yeast groups clustered and 22 species of 11 genera identified from 136 strains by rDNA ITS region RFLP analysis, morphological characters, and physiological tests that performed by Biolog yeast identification system. The similarity of community strcture among different sites of Tamshui river was higher than that of Er-Jen river. Major yeast populations of two polluttion type rivers were different, however, most of them were Candida. Candida spp. existed wildly in polluted waterbody. The multiple variance of yeast community structure and pollution factors was analysis. In Tamshui river, the diversity of total yeast correlated significantly with BOD, while the diversity of presumptive pathogenic yeast showed significant correlation with COD and NH3-N. Total yeast diversity was increased with pollution level at Tamshui river. Er-Jen river was mainly polluted by the wastewater of intensive animal feedlots, the diversity of total yeast and presumptive pathogenic yeast correlated significantly with concentration of mercury and zinc ions. Some yeast species related with pollution factors, for example, density of Candida tropicalis correlated with density of total bacteria and coliform at Tamshui river, and density of Candida parapsilosis correlated with concentration of mercury ion at Er-Jen river. The results showed that the yeast diversity represented by species abundance indices, such as Hill, Shannon-Weaver, Simpson and McIntosh, was corelated with water quality of the river.
目錄
表目錄
圖目錄
中文摘要
英文摘要
前言
一、水域環境中酵母菌之密度與種類
二、水體中酵母菌之來源
三、自來水中之酵母菌
四、酵母菌對健康之危害
五、以酵母菌為輔助之水質指標
六、台灣酵母菌之研究
七、研究目的
第一章 河水中酵母菌之收集與鑑定
1.1前人研究
1.1.1 淡水河流域與二仁溪環境概述
1.1.2 傳統酵母菌之鑑定
1.1.3 rDNA轉錄內間隔區(ITS)分析在菌種分類上之應用
1.2 材料與方法
1.2.1 採樣
1.2.2 酵母菌之計數、分離純化與保存
1.2.3 菌株鑑定
1.2.3.1 菌株之形態特性觀察
1.2.3.2 掃瞄式電子顯微鏡觀察之樣本處理
1.2.3.3 以BIOLOG YT MicroPlateTM進行菌種鑑定
1.2.3.4 ITS PCR-RFLP
1.2.3.4.1 萃取DNA
1.2.3.4.2 PCR-PFLP分析
1.3 結果
1.3.1 菌株採集與分離
1.3.2 ITS PCR-RFLP分群
1.3.2.1 白色酵母菌之RFLP分群
1.3.2.2 紅色酵母菌之RFLP分群
1.3.3 RFLP圖譜比對結果
1.3.4 Biolog系統、生理生化與傳統鑑定結果
1.3.5 菌種描述
1.4 討論與結論
1.4.1 河川酵母菌之分離、分群與鑑定
1.4.2 台灣河川中Candida屬佔優勢
1.4.3 台灣前人研究
1.4.4 Biolog菌種鑑定系統應用於環境菌株之可靠性
1.4.5 RFLP圖譜與Biolog生化反應提供鑑定之參考依據
1.4.6 環境研究之採樣方法選擇
第二章 酵母菌菌相與群聚結構之量化
2.1 前人研究
2.1.1 水環境中酵母菌之生態
2.1.2 歧異度指數分析
2.1.3 環境微生物群聚結構之研究
2.2 材料與方法
2.2.1 兩河川各採樣點間菌相之相關性分析
2.2.2 生態指數分析
2.3 結果
2.3.1 分佈與密度
2.3.2 兩河菌相比較
2.3.3 兩河生態歧異度之分析
2.3.3.1 淡水河酵母菌歧異度
2.3.3.2 二仁溪酵母菌歧異度
2.3.3.3 兩河歧異度比較
2.4 討論與結論
第三章 酵母菌群聚結構與水質因子間之關係
3.1 前人研究
3.2 材料與方法
3.2.1 水質參數
3.2.2 污染程度判定
3.2.3 生物參數
3.2.4 統計方法
3.3 結果
3.3.1 淡水河水質狀況
3.3.2 二仁溪水質狀況
3.3.2 酵母菌群聚結構與水質因子
3.3.2.1 以主成分分析(PCA)分析淡水河各項因子間之關係
3.3.2.2 酵母菌菌種與水質因子
3.4 討論與結論
第四章 結論與討論
參考文獻
附錄一
參考文獻
行政院農業委員會。2000。農業統計年報。行政院農業委員會出版。
行政院農業委員會林業試驗所。1999。台灣真菌名錄。 行政院農業委員會出版。
行政院環保署。2000。水體水質監測資料庫,www.epa.gov.tw.envdatahome.html.。
黃于玻。1998。栗栖溪河川生態品質與魚類群集關係之研究。東海大學環境科學研究所碩士論文。
邵廣昭。1998。海洋生態學。國立編譯館主編,明文書局出版。
張瀞文。2001。台灣海洋紅色酵母菌之系統學與生態學研究。東吳大學微生物學系碩士論文。
郭鍾秀、田志仁。1999。以生物指標(附著性矽藻)評估烏溪水質。第六屆海峽兩岸環境保護學術研討會論文集,1319-1323。
郭鍾秀、黃于玻、吳允暉、張耿榕。1998。以水棲昆蟲評估大甲溪水質。第五屆海峽兩岸環境保護學術研討會論文集,79-84。
陳信華、林建村。1996。二仁溪污染現況簡介。環境科學技技術教育專刊,第11期,46-53。
黃萬居。1998。淡水河水體環境分析與研究。行政院環保署研究報告,3-20。
黃錦城、蔡維鐘、賴敏男、許瑞祥、王西華。1997。利用PCR增殖核醣體DNA內轉錄區作探針鑑定膨瓶醬油之產氣酵母菌。食品科學,第24期,第2卷,149-165。
楊浩二。1995。多變量統計方法。華泰出版社。
楊萬全。1994。認識淡水河流域的水文。中等教育,第45期,第4卷,29-46。
歐陽嶠暉。1997。下水道工程學。長松出版社。
蔡尚悳、馮豐隆。1999。生態歧異度及其計算法之分類。生物科學,第42卷,第1期,65-83。
鄭玉珍、林良平。1977。台灣西部沿岸之微生物學研究(1):海洋酵母菌之定量、分離與鑑定。國立台灣大學理學院海洋研究所研究報告,216-228。
Ahearn, D. G., Roth, F. J., and Meyers, S. P. 1968. Ecology and characterization of yeasts from aquatic regions of South Florida. Mar. Biol. 1, 291-308.
Allan, J. D. 1995. Stream Ecology: Structure and function of running waters. Chapman & Hall.
Andlid, T., Juarez, R. V., and Gustafsson, L. 1995. Yeast colonizing the intestine of rainbow trout (Salmo gairdneri) and turbot (Scophtalmus maximu). Microb. Ecol. 30, 321-334.
Baldy, V., Gessner, M. O., and Chauvet, E. 1995. Bacteria, fungi and the breakdown of leaf litter in a large river. OIKOS 74, 93-102.
Barbour, M. T., Gerritsen, J., Snyder, B. D., and Stribling, J. B. 1998. Revision to Rapid Bioassessment Protocols: For use in streams and rivers: Periphyton, Menthic, Macroinvertebrates, and Fish. EPA, U.S.
Barnett, J. A., Payne, R. W., and Yarrow, D. 1990. Yeasts: characteristics and identification. Second edition . Cambridge, UK.
Berdicevsky, I., Duek, L., Merzbach, D., and Yannal, S. 1993. Susceptibility of different yeast species to environmental toxic metals. Environ. Pollut. 80, 41-44.
Böcklmann, U., Manz, W, Neu, T. R., and Szewzyk, U. 2000. Characterization of the microbial community of lotic organic aggregate (''river snow'') in the Elbe river of Germany by cultivation and molecular methods. FEMS Microbial. Ecol. 33, 157-170.
Brümmer, I. H. M, Fehr, W., and Wagner-Dobler, I. 2000. Biofilm community structure in polluted rivers: Abundance of dominant phylogenetic groups over a complete annual cycle. Appl. Environ. Microbiol. 66, 3078-3082.
Buck, J. D., Bubucis, P. M., and Combs, T. J. 1977. Occurrence of human-associated yeasts in bivalve shellfish from Long Island Sound. Appl. Environ. Microbiol. 33, 370-378.
Bucklin, K. E., McFeters, G. A., and Amirtharajah, A. 1991. Peneration of coliforms through municipal drinking water filters. Wat. Res. 25, 1013-1017.
Choi, K. H. and Dobbs, F. C. 1999. Comparison of two kinds of Biolog microplates (GN and ECO) in their ability to distinguish among aquatic microbial communities. J. Microbiol. Methods 36, 203-213.
Cooke, W. B. and Matsuura, G. S. 1969. Distribution of fungi in a waste-stabilization pond system. Ecology 50, 689-694.
Cooke, W. B., Phaff, H. J., Miller, M. W., Shifrine, M., and Knapp, E. P. 1960. Yeasts in polluted water and sewage. Mycologia 52, 210-230.
Cottrell, M., Kock, J. L. F., Lategan, P. M., and Britz, T. J. 1986. Long-chain fatty acid composition as an aid in the classification of the genus Saccharomyces. Syst. Appl. Micriobiol. 8, 166-168.
Cottrell, M. T., Wood, D. N. Yu, L., and Kirchman, D. L. 2000. Selected chitinase genes in cultured and uncultured marine bacteria in the α- and γ- subclasses of Proteobacteria. Appl. Environ. Microbiol. 66, 1195-1201.
Crump, B. C., Armbrust, E. V., and Baross, J. A. 1999. Phylogenetic Analysis of Particle-Attached and Free-Living Bacterial Communities in the Columbia River, Its Estuary, and the Adjacent Coastal Ocean. Appl. Environ. Microbiol. 65, 3192-3204.
de Araujo, F. V., Soare, C. A. G., Hagler, A. N., and Mendonça-Magler, L. C. 1995. Ascomycetous yeast communities of marine invertebrates in a southeast Brazilian mangrove ecosystem. Antonie van Leeuwenhoek 68, 91-99.
Deak, D. and Beuchat, L. R. 1993. Comparison of conductimer and traditional plating techniques for detecting yeasts in fruit juices. J. Appl. Bacteriol. 75, 546-550.
Dean-Ross, D. and Mills, A. L. 1989. Bacterial community structure and function along a heavy metal gradient. Appl. Environ. Microbiol. 55, 2002-2009.
Delille, D., Bassères, A., and Dessommes, A. 1997. Seasonal variation of bacteria in sea ice contaminated by diesel fuel and dispersed crude oil. Microb. Ecol. 33, 97-105.
Diaz, M. R. and Fell, J. W. 2000. Molecular analyses of the IGS & ITS regions of rDNA of the psychrophilic yeasts in the genus Mrakia. Antonie van Leeuwenhoek 77, 7-12.
Doggett, M. S. 2000. Characterization of fungal biofilms within a municipal water distribution system. Appl. Environ. Microbiol. 66, 1249-1251.
Doyle, J. J. and Doyle, J. L. 1990. Isolation of plant DNA from fresh tissue. Focus 12, 13.
Dunbar, J, Ticknor, L. O., and Kuske, C. R. 2000. Assessment of microbial diversity in four southwestern United States soils by 16S rRNA gene terminal restriction fragment analysis. Appl. Environ. Microbiol. 66, 2943-2950.
Eckner, K. F. 1998. Comparison of membrane filtration and multiple-tube fermentation by the colilert and enterolert methods for detection of waterborne used in drinking and bathing water quality monitoring in sourthern sweden. Appl. Environ. Microbiol. 64, 3079-3080.
Edberg, S. C., Allen, M. J., Smith, D. B., and The National Collaborative Study. 1989. National field evaluation of a defined substrate method for the simultaneous detection of total coliforms and Escherichia coli from drinking water: comparison with presence-absence techniques. Appl. Environ. Microbiol. 55, 1003-1008.
Effendy, I. and Schirrmeister, U. 1985. Mycological investigations in public swimming pools and saunas of marburg. Mykosen 28, 439-451.
Esteve-Zarzoso, B, Belloch, C., Uruburu, F., and Querol, A. 1999. Identification of yeasts by RFLP analysis of the 5.8S rRNA gene and the two ribosomal internal transcribed spacers. Int. J. Syst. Bacteriol. 49, 329-337. 1999.
Fell, J. W., Ahearn, D. G., Meyers, S. P., and Roth, F. J. Jr. 1960. Isolation of yeasts from Biscayne Bay, Florida, and adjacent benthic areas. Limnol. Oceanogr. 5, 366-371.
Fernández-Espinar, M. T., Esteve-Zarzoso, B., Querol, A., and Barrio, E. 2000. RFLP analysis of the ribosomal internal transcribed spacers and the 5.8S rRNA gene region of the genus Saccharomyces: a fast method for species identification and the differentiation of flor yeasts. Antonie van Leeuwenhoek 78, 87-97.
Findlay, S., and Sobczak, W. V. 2000. Microbial communities in hyporheic sediments. In Jones, J. B., and Mulholland, P. J. (ed.). Streams and ground waters. Academic press, 287-306.
Garland, J. L. and Mills, A. L. 1991. Classification and characterization of hererotrophic microbial communities on the basis of patterns of community-level sole-carbon-source utilization. Appl. Environ. Microbiol. 57, 2351-2359.
Ghannoum, M. and Elteen, K. A. 1986. Correlative relationship between proteinase production, adherence and pathogenicity of various strains of Candida albicans. J. Med. Vet. Mycol. 24, 407-413.
Giller, K. E., Witter, E., and Mcgrath, S. P. 1998. Toxicity of heavy metals to microorganisms and microbial processes in agricultural soils: a review. Soil Biol. Biochem. 30, 1389-1414.
Giller, P. S. and Malmqvist, B. 1998. The biology of streams and rivers. Oxford University Press. 72-73.
Gomez, E., Bisaro, V., and Conti, M. 2000. Potential C-source utilization patterns of bacterial communities as influences by clearing and land use in a vertic soil of argentina. Appl. Soil Ecol. 15, 273-281.
Gomez, N. 1999. Epipelic diatoms from the Matanza-Riachuelo (Argentina), a highly polluted basin from the pampean plain: biotic indices and multivariate analysis. Aquatic Ecosystem Health and Management 2, 301-309.
Goñi-Urriza, M., Capdepuy, M., raymond, N., Quentin, C., and Caumette, P. 1999. Impact of an urban effluent on the bacterial community structure in the Arga River (Spain), with special reference to culturable gram-negative rods. Can. J. Microbiol. 45, 826-832.
Gower, A. M. 1980. Ecological effects of changes iv water quality. In Gower, A. M. (ed.). Water quality in catchment ecosystems. Jone Wiley & Sons, 145-171.
Granchi, L., Bosco, M., Messini, A., and Vincenzini, M. 1999. Rapid detection and quantification of yeast species during spontneous wine fermentation by PCR-RFLP analysis of the rDNA ITS region. J. Appl. Microbiol. 87, 949-956.
Guillamón, J. M., Sabate, J., Barrio, E, Cano, J., and Querol, A. 1998. Rapid identification of wine yeast species based on RFLP analysis of the ribosomal internal transcribed spacer (ITS) region. Arch. Microbiol. 169, 387-392.
Haas, C. N., and Engelbrecht, R. S. 1980. Chlorine dynamics during inactivation of coliforms, acid-fast bacteria and yeasts. Wat. Res. 14, 1749-1757.
Hagler, A. H. and Mendonça-Hagler, L. C. 1981. Yeasts from Marine and estuarine waters with different levels of pollution in the state of Rio de Janeiro, Brazil. Appl. Environ. Microbiol. 41, 173-178.
Hagler, A. N., De Oliveira, R. B., and Mendonca-Hagler, L. C. 1982. Yeast in the intertidal sediments of a polluted estuary in Rio de Janeiro, Brazil. Antonie van Leeuwenhoek 48, 53-56.
Hagler, A. N., Mendonça-Hagler, L. C., Santos, E. A., Farage, S., Filho, J. S. B., and Schrank, A. 1986. Microbiol pollution indicators in Brazilian tropical and subtropical marine surface waters. Sci. Total Environ. 58, 151-160.
Hagler, A.H. and Ahearn, D.G. 1987. Ecology of aquatic yeasts. In The yeasts, Vol 1. Rose, A. H., and Harrison, J. S. (ed.). Academic Press, London, 181-205.
Hart, M. C., Elliott, G. N., Osborn, A. M., Ritchie, D. A., and Strike, P. 1998. Diversity amongst Bacillus merA genes amplified from mercury resistant isolate and directly from mercury polluted soil. FEMS Micro. Biol. Ecol. 27, 73-84.
Hassan, E. S. 1993. Monitoring of microbial water quality and saprophytic bacterial genera of the Abu Dhabi coastal area, U.A.E. Mar. Biol. 116, 489-495.
Hill, M. O. 1973. Diversity and evenness: a unifying notation and its consequences. Ecology 54, 427-432.
Hinzelin, F, and Lectard, P. 1978. Les levures dans les eaux de la moselle. Hydrobiologia 61, 209-224.
Horz, H. P., Rotthauwe, J. H., Lukow, T., and Liesack, W. 2000. Identification of major subgroups of ammonia-oxidizing bacteria in enviromental samples by T-RFLP analysis of amoA PCR products. J. Microbiol. Met. 39, 197-204.
James, S. A., Collins, M. D., and Roberts, I. N. 1996. Use of an rRNA internal transcribed spacer region to distinguish phylogenetically closely related species of the genera Zygosaccharomyces and Torulaspora. Int. J. Syst. Bacteriol. 46, 189-194.
Jamieson, W., Madri, P., and Claus, G. 1976. Survival of certain pathogenic microorganisms in sea water. Hydrobiologia 50(2), 117-121.
Jones, J. G. 1987. Diversity of freshwater microbiology. In Fletecher, M., Gray, T. R. G., &Jone, J. G. (ed.). Ecology of Microbial Communities. Cambridge University Press, Cambridge, 236-259.
Kalmbach, S., Manz, W., and Szewzyk, U. 1997. Dynamics of biofilm formation in drinking water :phylogenetic affiliation and metabolic potential of single cells assessed by formazan reduction and in situ hybridization. FEMS Micro. Biol. Ecol. 22, 265-279.
Kelly, M. G. 1998a. Use of the trophic diatom index to monitor eutrophication in rivers. Wat. Res. 32, 236-242.
Kelly, M. G. 1998b. Use of community-based indices to monitor eutrophication in European rivers. Environ. Conserv. 25, 22-29.
Kelly, M. G., and Whitton, B. A. 1995. The trophic diatom index: a new indexfor monitoring eutrophication in rivers. J. Appl. Phycol. 7, 433-444.
Kozdrój, J., van Elsa, J. D. 2001. Structural diversity of microbial communities in arable soils of a heavily industrialized area determined by PCR-DGGE fingerprinting and FAME profiling. Appl. Soil Ecol. 17, 31-42.
Kungolos, A., Aoyama, I., and Muramoto, S. 1999. Toxicity of organic and inorganic Mercury to Saccharomyces cerevisiae. Ecotoxicol. Environ. Saf. 43, 149-155.
Kurtzman, C.P. and Fell, J.W. 1998. The Yeasts, A Taxonomic Study. 4th ed. Elsevier Science.
Lee, C. F., Lee, F. L, Hsu, W. H., and Phaff, H. J. 1994. Arthroascus fermentans, a new yeast species isolated from soil in Taiwan. Int. J. Syst. Bacteriol. 44, 303-307.
Lee, S., and Fuhrman, J. A. 1990. DNA hybridization to compare species compositions of natural bacterioplankton assemblages. Appl. Environ. Microbiol. 56: 739-746.
Liu, W. T., Marsh, T. L., Cheng, H., and Forney, L. J. 1997. Characterization of microbial diversity by determining terminal restriction fragment length polymorphisms of genes encoding 16S rRNA. Appl. Environ. Microbiol. 63, 4516-4522.
Lloyd-Jones, G. and Lau, Peter C. K. 1998. A molecular view of microbial diversity in a dynamic landfill in Quebec. FEMS Micro. Biol. Lett. 162, 219-226.
López-Archilla, A. I., Marin, I., and Amil, R. 2001. Microbial community composition and ecology of an acidic aquatic environment: The Tinto river, Spain. Microb. Ecol. 41, 20-35.
Lupwayi, N. Z., Arshad, M. A., Rice, W. A., and Clayton, G. W. 2001. Bacterial diversity in water-stable aggregate of soils under conventional and zero tillage management. Appl. Soil Ecol. 16, 251-261.
Macnahghton, S. J., Stephen, J. R., Venosa, A. D., Davis, G. A., Chang, Y,-J., and White, D. C. 1999. Microbial population changes during bioremediation of an experimental oil spill. Appl. Environ. Microbiol. 65, 3566-3574.
Maltby, L. 1992. Heterotrophic microbes. In Calow, P., and Petts, G. E. (ed.). The river handbook vol. 1. Blackwell scientific publications, Oxford, 165-194.
Manz, W., Eisenbrecher, M., Neu, T. R., and Szewzyk, U. 1998. Abundance and spatial organization of gram-negative sulfate-reducing bacteria in activated sludge investigated by in situ probing with specific 16S rRNA targeted oligonucleotides. FEMS Microbial. Ecol. 25, 43-61.
Margalef, R. 1951. Diversidad de especies en las comunidades naturales. Barcelona 6, 59-72.
Marsh, T. L., Liu, W. T., and Forney, L. J. 1998. Beginning a molecular analysis of the eukaryal community in activated sludge. Wat. Sci. Tech. 37, 455-460.
McGinnis, M. R., Molina, T. C., Pierson, D. L., and Mishra, S. K. 1996. Evaluation of the Biolog MicroStation system for yeast identification. J. Med. Vet. Mycol. 34, 349-352.
McIntosh, R. P. 1967. An index of diversity and the relation of certain concepts to diversity. Ecology 48, 392-404.
Mendes, B., Urbano, P., Alves, C., Morais, J., Lapa, N., and Oliveira, J. S. 1998. Fungi as environmental microbiological indicators. Wat. Sci. Tech. 38, 155-162.
Menhinick, E. F. 1964. A comparison of some species-individuals diversity indices applied to samples of field insects. Ecology 45, 861.
Molina, F. I., Inoue, T., and Jong, S. C. 1992. Restriction polymorphisms in the internal transcribed spacers and 5.8S rRNA of Saccharomyces. Cur. Microbiol. 25, 251-255.
Morrison, G. M., Wei, C., and Engdahl, M. 1993. Variations of environmental parameters and ecological response in an urban river. Wat. Sci. Tech. 27, 191-194.
Nadal, D., Carro, D., Fernandez-Larrea, J., and Pina, B. 1999. Analysis and Dynamics of the chromosomal complements of wild sparkling-wine yeast strains. Appl. Environ. Microbiol. 65, 1688-1695.
Niemi, R. M., Knuth, S., and Lundstrom, K. 1982. Actinomycetes and fungi in surface waters and in potable water. Appl. Environ. Microbiol. 43, 378-388.
Niesters, H. G. M., Goessens, W. H. F., Meis, J. F. M. G., and Quint, G. V. 1993. Rapid, polymerase chain reaction-based identification assays for Candida species. J. Clin. Microbiol. 31, 904-910.
Nout, M. J. R., Platis, C. E., and Wicklow, D. T. 1997. Biodiversity of yeasts from Illinois maize. Can. J. Microbiol. 43, 362-367.
Owens, J. D., Thomas, D. S., Thompson, P. S., and Timmerman, J. W. 1989. Indirect conductimetry: a novel approach to the conductimetric enumeration of microbial populations. Lett. Appl. Microbiol. 9, 245-249.
Paulsson, M., Nyström, B., and Blanck, H. 2000. Long-term toxicity of zinc to bacteria and alage in periphyton communities from the river Göta Älv, based on a microcosm study. Aquat. Toxicol. 47, 243-257.
Pernthaler, J., Glöckner, F,-O., Unterhplzner, S., Alfreider, A., Psenner, R., and Amann, R. 1998. Seasonal community and population dynamics of pelagic bacteria and Archaea in a high mountain lake. Appl. Environ. Microbiol. 64, 4299-4306.
Pielou, E. C. 1966. The measurement of diversity in different types of biological collections. J. Theor. Ecol. 13, 131-144.
Pielou, E. C. 1969. An introduction to mathematical ecology. John Wiley & Sons, New York.
Pielou, E. C. 1975. Ecology diversity. John Wiley&Sons, New York.
Pomery, L. R. 1974. The ocean''s food web, a changing paradigm. BioScience 24, 499-504.
Praphailong, W., Gestel, M. V., Fleet, G. H., and Heard, G. M. 1997. Evaluation of Biolog system for the identification of food and beverage yeasts. Lett. Appl. Microbiol. 24, 455-459.
Ridgway, H. F., Safarik, J., Phipps, D., Carl, P., and Clark, D. 1990. Identification and catabolic activity of well-derived gasoline-degrading bacteria from a contaminated aquifer. Appl. Environ. Microbiol. 56, 3565-3575.
Rosenzweig, W. D., Minnigh, H. A., and Pipes, W. O. 1983. Chlorine demand and inactivation of fungal propagules. Appl. Environ. Microbiol. 45, 182-186.
Ruechel, R. 1990. Virulence factors of Candida species. In Samaranayake, L. P., and MacFarlane, T. W. (ed.). Oral Candidosis. Wright, London, 47-65.
Sandaa, R.-A., Torsvik, V., and Enger, Ø. 2001. Influence of long-term heavy-metal contamination on microbial communities in soil. Soil Biol. Biochem. 33, 287-295.
Serrano, E., Moreno, B., Solaun, M., Aurrekoetxea, J. J., and Ibarluzea, J. 1998. The influence of environmental factors on microbiological indicators of coastal water pollution. Wat. Sci. Tech. 38, 195-199.
Shannon, C. E. and Weaver, W. 1949. The mathematical theory of communication, 1st ed. University of Illinois Press, Ubana.
Shieh, W. Y., Chen, C. S., and Lee, F. L.1996. Density and species composition of yeasts in the outlet ares of two acidic streams in Liandong Bay, northest of Taiwan. Acta Oceangraphica Taiwan 35, 221-232.
Shishido, M. and Chanway, C. P. 1998. Storage effects on indigenous soil microbial communities and PGPR efficacy. Soil Biol. Biochem. 30, 939-947.
Simard, R. E. and Blackwood, A. C. 1971. Yeasts from the St. Lawrence river. Can. J. Microbiol. 20, 949-954.
Simpson, E. H. 1949. Measurement of diversity. Nature 163, 688.
Slávikova, E., and Vadkertiová, R. 1997. Seasonal occurrence of yeasts and yeast-like organisms in the river Danube. Antonie van Leeuwenhoek 72, 77-80.
Southood, T. R. E. 1978. Ecological methods. Chapman and Hall, London.
Spellerberg, I. F. 1991. Monitoring ecological change. Cambridge University, 112-129.
Spencer, J. F. T., Gorin, P. A. J., and Gardner, N. R. 1974a.Yeasts isolated from some lakes and rivers of Saskatchewan. Can. J. Microbiol. 20, 949-954.
Spencer, J. F. T., Gorin, P. A. J., and Gardner, N. R. 1974b.Yeasts occurring in the effluent disposal basins of a pulp mill in Saskatchewan. Can. J. Microbiol. 20, 993-998.
Suh, J. H., and Kim, D. S. 2000. Effects of Hg2+ and cell conditions on Pb2+ accumulation by Saccharomyces cerevisiae. Bioprocess eng. 23, 327-329.
Sung, S. J., A study of the marine yeasts in Taiwan. 1966. J. Sci. Eng. 3, 105-114.
Suzuki, M. T. and Giovannoni, S. J. 1996. Bias caused by template annealing in the amplification of mixtures of 16S rRNA genes by PCR. Appl. Environ. Microbiol. 62, 625-630.
Tiedje, J. M, Asuming-Brempong, S., Nusslein, K., Marsh, T. L., and Flynn, S. J. 1999. Open the black box of soil microbial diversity. Appl. Soil Ecol. 13, 109-122.
Torsvik, V., Daae, F. L., Sandaa, R.-A., and Øvreas, L. 1998. Novel techniques for analysing microbial diversity in natural and perturbed environments. J. Biotechnol. 64, 53-62.
Tubbing, D. M. J., Admiraal, W., Cleven, R. F. M. J., Iqbal, M., van de Meent, D., and Verweij, W. 1994. The contribution of complexed copper to the metabolic inhibition of algae and bacteria in synthetic media and river water. Wat. Res. 28, 37-44.
van Elsas, J. D., Duarte, G. F., Rosado, A. S., and Smalla, K. 1998. Microbiological and molecular biological methods for monitoring microbial inoculants and their effects in the soil environment. J. Microbiol. Methods 32, 133-154.
Vilgalys, R. and Hester, M. 1990. Rapid genetic identification and mapping of enzymatically amplified ribosomal DNA from several Cryptococcus species. J. Bacteriol. 172, 4238-4246.
Warren, N. G., and Hazen, K. C. 1995. Candida, Cryptococcus, and other yeasts of medical importance. In MuRRay, P.R. (ed.). Manual of clinical microbiology 6th.Anonymous ASM press, Washington, 723-737.
Watanabe, T., Asai, K., and Houki, A. 1990. Numeriacl simulation of organic pollution in flowing waters. In Cheremisinoff, P. (ed). Encyclopedia of environmental control technology vol 4: Hazardous waste containment and treatment Gulf Publishing Company, Houston, Texas, 251-281.
Watt, H. J., Cheah, F. S. H., Hube, B., Sanglard, D., and Gow, N. A. R. 1998. Altered adherence in strains of Candida albicans harbouring. FEMS Microbial. Biol. Lett. 159, 129-135.
White, T. J., Bruns, T., Lee, S., and Taylor, J. 1990. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In PCR protocols: a guide to methods and applications. Innis, M. A., Gelfand, D. H., Sninsky, J. J., and White, T. J. (ed.). Academic Press, Inc, 315-322.
Wickerham, L. J. 1951. Taxonomy of yeasts. Tech. Bull. USDept. Agric. 1029, 1-56.
Woollett, L. L. and Hedrick, L. R. 1970. Ecology of yeasts in polluted water. Antonie van Leeuwenhoek 36, 427-435.
Wu, J. T., 1986. Relation of change in river diatom assemblages to water pollution. Bot. Bull. Academia Sinica 27, 237-245.
Wu, J. T., and Chang, S. C. 1996. Relation of the diatom assemblages in the surface sediments to the pH values of an alpine lake in Taiwan. Arch. Hydrobiol. 137, 551-563.
Wu, J. T., and Suen, W. C. 1985. Chance of algal associations in relation to water pollution. Bot. Bull. Academia Sinica 26, 203-212.
Wuhrmann, K. 1972. Stream purification. In Mitchell, R. (ed.). Water pollution microbiology. Wiley-Interscience. 119-151.
Yannai, S., and Berdicevsky, I., and Duck, L. 1991. Transformations of inorganic mercury by Candida albicans and Saccharomyces cerevisiae. Appl. Environ. Microbiol. 57, 245-247.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔