(3.237.178.91) 您好!臺灣時間:2021/03/07 01:46
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:陳博源
研究生(外文):Po-Yuan Chen
論文名稱:即時信號源方位估測與多通道取樣校正技術實現
論文名稱(外文):Realizing Techniques forReal-Time Direction Finding System and Its Multi-Channel Sampling/Calibrations
指導教授:吳 賢 財陳 福 坤
指導教授(外文):Hsien-Tsai WuFu-Kun Chen
學位類別:碩士
校院名稱:南台科技大學
系所名稱:電子工程系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:英文
論文頁數:65
中文關鍵詞:超音波相位陣列系統方位估測多通道類比至數位轉換電路陣列調校
外文關鍵詞:ultrasonic phase array systemdirection of arrivalmulti-channel acquisition circuitarray calibrationunit-norm constrained adaptive filter
相關次數:
  • 被引用被引用:0
  • 點閱點閱:167
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:19
  • 收藏至我的研究室書目清單書目收藏:0
本論文旨在自行研發乙套超音波相位陣列系統,其組成包括鎖相迴路式同步相位發射、接收機、多通道類比/數位轉換電路,及DSP目標板,以接收超音波方位信號,並進行即時方位估測,且應用”unit-norm constrained adaptive filter”演算法實現即時。另外,由於實際相位陣列系統元件之非理想性,本論文亦針對現有文獻提出之三種常用陣列調校方法予以探討,最後採用統計式方位向量方法(statistical direction vectors)執行陣列校正,以建立自製陣列系統之信號源方向向量基底,提供即時方位估測之用。

This thesis constructs a self-developed ultrasonic phase array system, comprising synchronous receivers with a PLL circuit, and a multi-channel acquisition circuit to receive an ultrasonic sinusoidal signal and then transmit to a DSP target board in real-time estimation. The real time direction finding process used is a unit-norm constrained adaptive filter algorithm. To allow for the non-ideal behaviour of components in the phase array system, three well known array calibration methods are studied, and we finally adopted statistical direction vectors for array calibration and building a database using a variety of direction finding algorithms with Code Composer StudioTM. Thus, real-time direction finding is implemented in the proposed ultrasonic phase array system.
Keywords: ultrasonic phase array system, multi-channel real-time sampling, DOA.

CONTENTS
Abstract /v
Acknowledgements /vii
Table of Content /viii
Figure and Table Captions /x
Chapter 1 INTRODUCTION /1
1.1 Narrow-Band Signal Model /3
1.2 Source Number Estimation /5
AIC (Akaike information theoretic) Criteria /6
MDL (Minimum Descriptive Length) Criteria /7
GDE (Gerschgorin Disk Estimator)Criteria /7
1.3 Eigen-Subspace Algorithms /7
PHR (Pisarenko Harmonic Retrieval) Algorithm /7
MUSIC ( MUltiple SIgnal Classification ) Algorithm /7
MN (Minimum-Norm) Algorithm /8
1.4 The Unit-Norm Constrained Adaptive Filter Algorithm /9
1.5 Thesis Outline /10
Chapter 2 ULTRASONIC ARRAY TESTBED FOR DIRECTION FINDING SYSTEM / 14
2.1 Structure of Overall System /14
2.2 Transmitter with Amplitude Modulation (AM) /15
2.3 The Synchronous Receiver System /16
2.4 Self-developed Multi-Channel Acquisition Card /19
2.4.1 Analog-Digital Conversion /19
2.4.2 THS1206 Interface Connection /21
2.4.3 Calibration of Level Drifting /23
Chapter 3 CALIBRATION /34
3.1 Calibrated Array Data Model /34
3.2 Calibration Methods for Gain and Phase /36
3.2.1 Least-Squares Fitting Approach /36
3.2.2 Inversed Subspace Fitting Approach /39
3.3 Statistical direction vector scheme for MUSIC /40
Chapter 4 SIMULATION AND IMPLEMENTATIONS /45
4.1 Detection of Source Number /45
4.2 MUSIC Algorithm for Real Data /46
4.3 Adaptive PHR Algorithm for Real Data /46
4.3.1 Array data without normalization /46
4.3.2 Array data with normalized /47
4.4 Implementation over TI TMS320C5402 CCS platform /47
Chapter 5 CONCLUSIONS AND FUTURE WORK /54
References /78
Figure and Table Captions
Figure 1.1 Configuration of an incident and a linear array with 4 sensors. /13
Figure 1.2 Configuration of the adaptive PHR algorithm. /13
Figure 2.1 Block diagram of Phase Array System. /25
Figure 2.2 Block diagram of product modulator of AM Transmitter. /26
Figure 2.3 Amplitude Modulation (AM) signal. /26
Figure 2.4 Block diagram of An In-phase and Quadrature (I-Q) Receiver. / 27
Figure 2.5 Block diagram of Coherent Array Receiver System. /28
Figure 2.6 Block diagram of THS1206 Interface Connection. /29
Figure 2.7 Block diagram of THS1206 function. /29
Figure 2.8 Controlled flow chart of Two Programmable THS1206. /30
Figure 2.9 Controlled configuration of the ADC card. /31
Figure 2.10 The FIFO as a Circular Buffer. /31
Figure 2.11 The data read from the eight channels before level calibration /32
Figure 2.12 Schematic view of auto-adjusting voltage level circuit with dc coupling. /32
Figure 2.13 The data read from the eight channels after level calibration. /33
Figure 3.1 MUSIC spectrum analysis of DOA of —13 degree for statistical direction vectors scheme. /43
Figure 3.2 MUSIC spectrum analysis of DOA of —13 degree for gain, phase, mutual coupling. (1 DOAs: —1 degree; 8 DOAs: —12, —7, —5, —2, 0, 4, 7, and 9 degree). /43
Figure 3.3 MUSIC spectrum analysis of DOA of 8 degree for statistical direction vectors scheme. /44
Figure 3.4 MUSIC spectrum analysis of DOA of 8 degree for gain, phase, mutual coupling. (1 DOAs: —1 degree; 8 DOAs: —12, —7, —5, —2, 0, 4, 7, and 9 degree). /44
Figure 4.1 Direction spectrum of +7 degree. /49
Figure 4.2 Direction spectrum of —3 degree. /49
Figure 4.3 Direction spectrum of —12 degree without normalization. /50
Figure 4.4 MSE of Direction of —12 without normalization, u is 0.0000000001. /50
Figure 4.5 Direction spectrum of —12 degree with normalization. /51
Figure 4.6 MSE of Direction of —12 with normalization, u is 0.008. /51
Figure 4.7 MSE of direction +2 degree, u is 0.0055. /57
Figure 4.8 MSE of direction of +9 degree, u is 0.004. /57
Figure 4.9 Real time direction finding of zero degree, MSE, u is 0.004, and 8 channels sinusoidal signals of DOA using TMS320 VC54029 DSP and in CCS. /58
Figure 4.10 The unit-norm constrained adaptive filter angle tracking for one source; the 2D plotted tracking curve of DOA using real data from 15 degree to —15 degree, per 300 snapshots plot one dot, and u is 0.004. /59
Figure 4.11 The unit-norm constrained adaptive filter tracking angular spectrum for one source; the 3D plotted tracking curve of DOA using real data from 15 degree to —15 degree, per 300 snapshots plot one spectrum, and u is 0.004 /60
Figure 4.12 The MSE of DOA for tracking signal sources from +15 degree to —15 degree. /61
Table 1. Eigen-value of Degree /46

[1] J. Pierre and M. Kaveh, ” Direction—Finding using A Laboratory Experimental Ar-ray Testbed,” IEEE Spectrum Estimation and Modeling, Fifth ASSP Workshop, pp. 114-118, 1990.
[2] J. Pierre and M. Kaveh, ”Experimental Performance of Calibration and Direc-tion-Finding Algorithm,” ICASSP, pp. 1365-1368, 1991.
[3] B. Friedlander and J. Weiss, ”Direction Finding in the Presence of Mutual Cou-pling,” IEEE Trans. Antennas and Propagation, Vol. 39, No.3, pp. 273-284, March 1991.
[4] TMS320C54x Code Composer Studio Tutorial, Texas Instruments Inc, February 2000.
[5] Using MATLAB, Version 6, The Math Works, Inc.2000.
[6] THS1206 Datasheet, Texas Instruments Inc, November 2000.
[7] AD8041, Analog Devices, Inc., 2001.
[8] AD820, Analog Devices, Inc., 1999.
[9] M. Wax and T. Kailath, “Detection of signals by information theoretic criteria,” IEEE Trans. ASSP, vol.33, no.2, pp.387-392, April 1985.
[10] Hsien-Tsai Wu, J. F. Yang, and F. K. Chen, “Source Number Estimators Using Transformed Gerschgorin Radii,” IEEE Trans. on Signal Processing, vol.43, pp.1325-1333, June 1995.
[11] V. F. Pisarenko, “The retrieval of harmonics from a covariance function,” Geophys, Soc, vol.33, 1973.
[12] R. O. Schmidt, “Multiple Emitter Location and Signal Parameter Estimation,” IEEE Trans. on Array Processing, vol. Ap-34, Mar.1986, pp.276-280.
[13] P. A. Thompson, “An Adaptive Spectral Analysis Technique for Unbiased Fre-quency Estimation in the Presence of White Noise,” Proc. 13th Asilomar Conf. On Circ. Syst. And Comput., Pacific Grove, CA, pp. 529-533, 1980.
[14] J .F. Yang, H. T. Wu, and F. K. Chen, ”Simplified adaptive noise subspace algo-rithms for robust direction tracking,” IEE PROCEDDINGS-F, vol.140, no.5, OCT., 1993, pp.329-334.
[15] S. J. Orfanidis, Optimum Signal Processing, McGRAW-HILL, 1990.
[16] S. Haykin, Communication Systems, 4th, John-Wiley, 2001.
[17] W. M. Austin, ”CMOS Phase-Locked-Loop Applications Using the CD54/74HC/HCT4046A and CD54/74HC/HCT7046A,” Texas Instruments, Appli-cation Report, SCHA003A-Feb, 2002.
[18] J. W. Pierre, and M. Kaveh, “Experimental Evaluation of High-Resolution Direc-tion-Finding Algorithms Using a Calibrated Sensor Array Testbed,” DIGITAL SIGNAL PROCESSING, vol.5, pp.243-254, 1995.
[19] D. H. Johnson and S. R. Degradf, “Improving the Resolution of Bearing in Passive Sonar Arrays by Eigenvalue Analysis,” IEEE Trans. ASSP, vol.30, No.4, pp.636-646.
[20] R. Kumaresan and D.W. Tufts, “Estimating the Angles of Arrival of Multiple Plane Waves,” IEEE Trans. Aerosp. And Electron. Syst., vol. AES-19, No.1, pp.134-139, 1983.
[21] B. Friedlander, “Direction finding using an interpolated array,” In Proc.ICASSP’90, Albuquerque, NM, Apr. 1990.
[22] J. Pierre and M. Kaveh, “Experimental performance of calibration and direc-tion-finding algorithms,” In Proc. 36th Midwest Symposium on Circuit and Systems, Aug. 1993.
[23] C. R. Wan, J. T. Goh, and C. S. Chia, “Array Calibration Based on Inverse Sub-space Fitting,” MTS/IEEE Conf. and Exhibition, vol.4, pp.2486-2491, 2001.
[24] Po-Yuan Chen, Chih-Wei Chen, and Hsien-Tsai Wu, ”Implement Research on Ultra Sound Phase Array Multi-Channel Sampling and Level Drifting,” ICSP2002, Bejin, China, 2002(to be published).
[25] S. Haykin, Adaptive Filter Theory, 4th, PRENTICE HALL, 2002.
[26] DSP超音波相位陣列信號方位偵測系統”,吳賢財、陳博源、陳志偉,IC設計月刊DSP專欄,vol. 26,pp.38-51, June, 2002。

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文
 
系統版面圖檔 系統版面圖檔