跳到主要內容

臺灣博碩士論文加值系統

(3.229.142.104) 您好!臺灣時間:2021/07/28 11:13
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:王安良
論文名稱:類神經網路模擬控制焚化系統中戴奧辛生成之探討
論文名稱(外文):An Artificial Neural Network Study on the Formation and Control of Dioxin from Incinerators
指導教授:謝樹木謝樹木引用關係
學位類別:碩士
校院名稱:東海大學
系所名稱:化學工程學系
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:91
中文關鍵詞:類神經網路焚化戴奧辛
外文關鍵詞:neural networkincineratordioxin
相關次數:
  • 被引用被引用:1
  • 點閱點閱:192
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究利用類神經網路(artificial neural networks)模擬焚化系統中戴奧辛(dioxins)排放與焚化操作參數、進料組成間之關係,其終極目的是求得最佳操作區,以確定最低之戴奧辛排放。
研究方法針對蒐集之實驗資料以類神經網路分三階段進行模擬:(一)架構最佳之類神經網路,(二)完成最佳類神經網路之學習與測試,(三)探討最佳焚化操作區。
研究進行以一商業運轉之流體化床式焚化系統及水牆式焚化系統為對象,利用Neuralworks Professional Ⅱ/Plus軟體分別進行模擬。
模擬結果顯示:流體化床式焚化系統最佳操作條件為焚化爐頂部及鍋爐溫度分別控制在909℃和253℃,其戴奧辛排放值為6.9 ng-TEQ/Nm3。水牆式焚化系統最佳操作則為上部輻射室溫度及煙道氣溫度控制在800℃及210℃,戴奧辛排放量為133 ng/Nm3。

This study, utilizing artificial neural networks, correlates the emission of dioxins to the feed compositions and operating conditions of some incinerators. The ultimate concern is to search for the optimum operating conditions so that minimum dioxin emission values are obtained.
Three successive stages were carried out to the designed purposes, namely, (1) finding the best neural networks for incinerators under study, (2) completing the learning and testing of the proposed network structure and (3) locating the optimum operating conditions.
Both a commercial scale fluidized-bed and a water cooled incinerators are subjected to the simulation using Neuralworks Professional II/Plus developed by Neural Networks.
Results indicate that the lowest dioxin emissions(at a value of 6.9 ng-TEQ/Nm3) occur if the temperatures are controlled at 909℃ and 253℃ for the furnace top and boiler out, respectively, for fluidized-bed incinerator; while the minimum dioxin emissions(at the value of 133 ng/Nm3) occur provided that the flue gas temperature is controlled at 210℃ and the furnace top(radiation zone) operated at 800℃ in the case of water cooled incinerator.

第 一 章 緒論
1-1 研究緣起
1-2 研究目的與方法
第 二 章 文獻回顧
2-1 戴奧辛
2-1-1 基本性質及毒性當量
2-1-2 環境的影響
2-2 焚化系統
2-2-1 焚化系統流程
2-2-2 焚化系統中的戴奧辛
2-3 法規與操作規範
2-3-1 戴奧辛排放標準
2-3-2 焚化爐操作條件規範
2-4 類神經網路
2-4-1 類神經網路的特點
2-4-2 理論基礎與基本結構
2-4-3 倒傳遞類神經網路
2-4-4 類神經網路在化工上的應用
第 三 章 類神經網路模擬
3-1 模擬流程
3-1-1 類神經網路模式的選擇
3-1-2 網路模擬
第 四 章 結果與討論
4-1 流體化床式焚化爐模擬
4-2 水牆式焚化爐模擬
第 五 章 結論與建議
5-1 結論
5-2 建議

王雅玢, ”廢棄物燃燒系統中PCDD/PCDF形成機制及控制方法”, 工業污染防治第61期, 1997.
古清燻, “旋轉窯事業廢棄物焚化技術”, 環安簡訊電子報第15期, 2002.
司洪濤等, “垃圾焚化廠廢氣處理系統規劃設計與運轉之探討”, 工業污染防治第67期, 1998.
洪英暉, “垃圾焚化爐內煙氣滯留時間與戴奧辛排放量的關係”, 技術與工程, 2000.
涂瑞澤等, “線上學習神經控制器”, 大葉學報, Vol. 6, 1997.
陳宣德, “焚化爐”, 環保資訊, 1992.
黃進益, “設定垃圾焚化廠的廢氣排放溫度”, 工業污染防治第51期, 1994.
詹炯淵等, “都市垃圾焚化廠戴奧辛排放之控制”, 工業污染防治第70期, 1999.
鄭春生, “類神經網路訓練教材”, 中岡科技有限公司, 1995.
樓基中, ”有機毒物之焚化及二次污染控制”, 環境毒物, 1995.
Akio, Y., K., Takeo, O., Toshikazu, O., Noriko, and S., Takayuki, Formation of Dioxins During the Combustion of Newspapers in the Presence of Sodium Chloride and Poly(vinyl chloride), Environ. Sci. Technol., Vol. 35, 2001.
Andersson, P. and S. Marklund, Emissions of Organic Compounds from Biofuel Combustion and Influence of Different Control Parameters Using a Laboratory Scale Incinerator, Chemosphere, Vol. 36, 1998.
Altissimi, R., A. Brambilla, A. Deidda and D. Semino, Optimal Operation of a Separation Plant Using Artificial Neural Networks, Comput. Chem. Eng., Vol. 22, 1998.
Anthony, E. J., L. Jia and D. L. Granatstein, Dioxin and Furan Formation in FBC Boilers, Environ. Sci. Technol., Vol. 35, 2001.
Baughman, D. R. and Y. A. Liu, Neural Networks in Bioprocessing and Chemical Engineering, Academic Press, Inc., 1995.
Besombes, J. L., A. Maître, O. Patissier, N. Marchand, N. Chevron, M. Stoklov and P. Masclet, Particulate PAHs Observed in the Surrounding of a Municipal Incinerator, Atmospheric Environment, Vol. 35, 2001.
Bhat, N., J. Saint-Donat and T. J. McAvoy, Neural Net Based Model Predictive Control, Int. J. Control, Vol. 54, 1991.
Blumenstock, M., R. Zimermann, K. W. Schramm, A. Kaune, U. Nikolai, D. Lenoir and A. Kettrup, Estimation of the Dioxin Emission (PCDD/FI-TEQ) from the Concentration of Low Chlorinated Aromatic Compounds in the Flue and Stack Gas of a Hazardous Waste Incinerator, Journal of Analytical and Applied Pyrolysis, Vol. 49, 1999.
Blumenstock, M., R. Zimmermann, K. W. Schramm and A. Kettrup, Influence of Combustion Condition on the PCDD/F-, PCB-, PCBz- and PAH-concentrations in the Post-combustion Chamber of a Waste Incineration Pilot Plant, Chemosphere, Vol. 40, 2000.
Brain, K. G. and M. L. Paul, Role of Combustion and Sorbent Parameters in Prevention of Polychlorinated Dibenzo-p-dioxin and Polychlorinated Dibenzofuran Formation During Waste Combustion, Environ. Sci. Technol., Vol. 28, 1994.
Broussard, M. R., D. B. Garrison, Pollard and J., K. Y. San, Process Identification Using Neural Networks, Comput. Chem. Eng., Vol. 16, 1992.
Cains, P. W. and G. H. Eduljee, Prediction of PCDD and PCDF Emissions from Municipal Solid Waste (MSW) Incinerators, Chemosphere, Vol. 34, 1997.
Chang, N. B. and W. C. Chen, Prediction of PCDDs/PCDFs Emissions from Municipal Incinerators by Genetic Programming and Neural Network Modeling, Waste Manage. & Res., Vol. 18, 2000.
Chang, Y. H., W. C. Chen and N. B. Chang, Comparative Evaluation of RDF and MSW Incineration, Journal of Hazardous Materials, Vol. 58, 1998.
Disse, G., H. Weber, R. Hamann and H. J. Haupt, Comparison of PCDD and PCDF Concentrations after Aerobic and Anaerobic Digestion of Sewage Sludge, Chemosphere, Vol. 31, 1995.
Domingo, J. L., M. Schuhmacher, L. Müller, J. Rivera, S. Granero and J. M. Llobet, Evaluating the Environmental Impact of an Old Municipal Waste Incinerator: PCDD/F Levels in Soil and Vegetation Samples, Journal of Hazardous Materials, A76, 2000.
Dong, D., T. J. McAvoy, and E. Zafiriou, Batch-to-Batch Optimization Using Neural Network Models, Ind. Eng. Chem. Res., Vol. 35, 1996.
Environment Canada, National Incinerator Testing Evaluation Program: Environmental Characterization of Mass Burning Incinerator Technology at Quebec City, Summary Report, EPS3/UP/5, Ottawa, Canada, 1988.
Everaert, K. and J. Baeyens, The Formation and Emission of Dioxins in Large Scale Thermal Processes, Chemosphere, Vol. 46, 2002.
Fiedler, H., C. Lau and G. Eduljee, Statistical Analysis of Patterns of PCDDs and PCDFs in Stack Emission Samples and Identification of a Marker Congener, Waste Manage. & Res., Vol. 18, 2000.
Halogen, I., J. Tarhanen, P. Ruokojärvi, K. Tuppuraunen and J. Ruuskanen, Effect of Catalysts and Chlorine Source on The Formation of Organic Chlorinated Compounds, Chemosphere, Vol. 30, 1995.
Harrington, P. D. B., A. Urbas and C. Wan, Evaluation of Neural Network Models with Generalized Sensitivity Analysis, Anal. Chem., Vol. 72, 2000.
Himmelblau, M. and J. C. Hoskin, Artificial Neural Network Models of Knowledge Representation in Chemical Engineering, Comput. Chem. Eng., Vol. 12, 1988.
Hunsigner, H., S. Kreisz and H.Vogg, Experiences Gained from the Sampling of Chlorine Aromatics in the Raw Gas of Waste Incineration Plants, Chemosphere, Vol. 32, 1996.
Horstmann, M. and M. S. Mclachlan, Results of an Initial Survey of Polychlorinated Dibenzo-p-dioxins (PCDD) and Dibenzofurans (PCDF) in Textiles, Chemosphere, Vol. 31, 1995.
Iino, F., K. Tsuchiya, T. Imagawa and B. K. Gullett, An Isomer Prediction Model for PCNs, PCDD/Fs, and PCBs from Municipal Waste Incinerators, Environ. Sci. Technol., Vol. 35, 2001.
Ishikawa, R., A. Buekens, H. Huang and K. Watanabe, Influence of Combustion Conditions on Dioxin in an Industrial-Scale Fluidized-Bed Incinerator: Experimental Study and Statistical Modeling, Chemosphere, Vol. 35, 1997.
Jay, K. and L. Stieglitz, Identification and Quantification of Volatile Organic Components in Emissions of Waste Incineration Plants, Chemosphere, Vol. 30, 1995.
John, F. C. K., B. S., Lim and E. N. L. Lennie, Optimal Design of Neural Networks Using the Taguchi Method, Neurocomputing, July, 1995.
Kasai, E., S. Harjanto, T. Terui, T. Nakamura and Y. Waseda, Thermal Remediation of PCDD/Fs Contaminated Soil by Zone Combustion Process, Chemosphere, Vol. 41, 2000.
Kim, W. qnd J. K. Lee, Neural Network Based Adaptive Optimal Controller on Optimization Models, Decision Support System, Vol. 18, 1996.
Kocjančič, R. and J. Zupan, Application of a Feed-Forward Artificial Neural Network as a Mapping Device, J. Chem. Inf. Comput. Sci., Vol. 37, 1997.
Lee, C. W., P. M. Lemieus, B. K. Gollett, J. V. Ryen and J. D. Kilgroe, Research on Emissions and Mitigation of POP’s from Combustion Sources, U.S. Environmental Protection Agency, 1994.
Lemieus, P. M., C. W. Lee and J. V. Ryan, Prediction of Dioxin/Furan Incinerator Emissions Using Low-Molecular-Weight Volatile Products of Incomplete Combustion, Air & Waste Manage. Asoc., Vol. 50, 2000.
Lin, J. S., S. S. Jang, S. S. Shieh and M. Subramaniam, Generalized Multivariable Dynamic Artificial Neural Network Modeling for Chemical Processes, Ind. Eng. Chem. Res., Vol. 38, 1999.
Ling, Y. C. and P. C. C. Hou, A Taiwanese Study of 2,3,7,8-substituted PCDD/DFs and Coplanar PCBs in Fly Ashes from Incinerators, Journal of Hazardous Materials, Vol. 58, 1998.
MacMurray, J. C. and D. M. HimmeiBlau, Modeling and Control of a Packed Distillation Column Using Artificial Neural Networks, Comput. Chem. Eng., Vol. 19, 1995.
McAvoy, T. J. and N. Bhat, Use of Neural Nets for Dynamic Modeling and Control of Chemical Process Systems, Comput. Chem. Eng., Vol. 14, 1990.
McAvoy, T. J. and H. T. Su, Integration of Multilayer Perceptron Networks and Linear Dynamic Models: A Hammerstein Modeling Approach, Ind. Eng. Chem. Res., Vol. 32, 1993.
Molga, E. J., B. A. A. V. Woezik and K. R. Westerterp, Neural Networks for Modeling of Chemical Reaction Systems with Complex Kinetics: Oxidation of 2-octanol with Nitric Acid, Chemical Engineering & Processing, Vol. 39, 2000.
Nascimento, A. O., R. Giudici and R. Guardani, Neural Network Based Approach for Optimization of Industrial Chemical Processes, Comput. Chem. Eng., Vol. 24, 2000.
Oehme, M. and M. D. Müller, Levels and Congener Patterns of Polychlorinated Dibenzo-p-dioxins and Dibenzofurans in Solid Residues from Wood-fired Boilers: Influence of Combustion Conditions and Fuel Type, Chemosphere, Vol. 30, 1995.
Park, S. and M. Lee, A New Scheme Combing Neural Feedforward Control with Model-Predictive Control, AICHE J., Vol. 38, 1992.
Park, S. and J. J. Song, Neural Model Predictive Control for Nonlinear Chemical Processes, J. Chem. Eng. Japan, Vol. 26, 1993.
Salthammer, T., H. Klipp, R. D. Peek and R. Marutzky, Formation of Polychlorinated Dibenzo-p-dioxins (PCDD) and Polychlorinated Dibenzofurans (PCDF) During the Combustion of Impregnated Wood, Chemosphere, Vol. 30, 1995.
Sakai, S. I., K. Hayakawa, H. Takatsuki and I. Kawakami, Dioxin-like PCBs Released from Waste Incinerator and Their Deposition Flux, Environ. Sci. Technol., Vol. 35, 2001.
Sasai, S., M. Hiraoka, N. Takeda and K. Shiozaki, Behavior of Coplanar PCBs and PCNs in Oxidative Conditions of Municipal Waste Incineration, Chemosphere, Vol. 32, 1996.
Sbarbaro, D. and J. Hunt, Neural Networks for Nonlinear Internal Model Control, IEE Proceedings-D, Vol. 138, 1991.
Schuhmacher, M., M. C. Rodriguez-Larena, M. C. Agramunt, J. Diaz-Ferreo and J. L. Domingo, Environment Impact of a New Hazardous Waste Incinerator in Catalonia, Spain: PCDD/PCDF levels in Herbage samples, Chemosphere, Vol. 48, 2002.
Schoonenboom, M. H., P. C. Tromp and K. Olie, The Formation of Coplanar PCBs, PCDDs and PCDFs in a Fly Ash Model System, Chemosphere, Vol. 30, 1995.
Shin, D. H., S. Choi, J. E. Oh and Y. S. Chang, Evaluation of Polychlorinated Dibenzo-p-dioxin/Dibenzofuran(PCDD/F) Emission in Municipal Solid Waste Incinerators, Environ. Sci. Technol., Vol. 33, 1999.
Simutis, R. and A. Lübbert, Exploratory Analysis of Bioprocesses Using Artificial Neural Network-Based Methods, Biotechnol. Prog., Vol. 13, 1997.
Sridhar, D. V. and E. B. Seagrave, An Information Theoretic Approach for Combining Neural Network Process Models, Neural Network, Vol. 12, 1999.
Takeo, K., Y. Akio, O. Toshikazu and S. Takayuki, Formation of PCDDs, PCDFs, and Coplanar PCBs from Polyvinyl Chloride during Combustion in an Incinerator, Environ. Sci. Technol., Vol. 36, 2002.
Tejima, H., S. Shibakawa, K. Osumi and M. K. Takuma, Dioxin Emission Behavior in MSW Incinerator Designed after Japanese Guidelines for Controlling Dioxin, Chemosphere, Vol. 37, 1998.
Tejima, H., I. Nakagawa, T. Shinoda and I. Maeda, PCDDs/PCDFs Reduction by Good Combustion Technology and Fabric Filter with/without Activated Carbon Injection, Chemosphere, Vol. 32, 1996.
Tetko,I. V., A. E. P. Villa and D. J. Livingstone, Neural Network Studies. 2. Variable Selection, J. Chem. Inf. Comput. Sci., Vol. 36, 1996.
Tetko, V., A. E. P. Villa and D. J. Livingstone , Neural Network Studies. 2. Variable Selection, J. Chem. Inf. Comput. Sci., Vol. 36, 1996.
Tetsuya, W., A. Minore, K. Takeichi, S. Makoto, T. Yoshio, A. Hiroshi and N. Masanobu, An Advanced Fluidized-Bed Swirl Incinerator For Dioxin Control During Municipal Waste Disposal, Chemosphere, Vol. 32, 1996.
Tholudur, W. and F. Ramirez, Optimization of Fed-Batch Bioreactors Using Neural Network Parameter Function Models, Biotechnol. Prog., Vol. 12, 1996.
Tuppurainen, K., M. Aatamila, P. Ruokojärvi, I. Halonen and J. Ruuskanen, Effect of Liquid Inhibitors on PCDD/F Formation Prediction of Particle-phase PCDD/F Concentrations Using PLS Modeling with Gas-phase Chlorophenol Concentrations as Indepndent Variables, Chemosphere, Vol. 38, 1999.
Ungar, L. H. and D. C. Psichogios, Direct and Indirect Model Based Control Using Artificial Neural Networks, Ind. Eng. Chem. Res., Vol. 30, 1991.
Vaidyanathan, R., V. Venkatasubramanian and Y. Yamamoto, Process Fault Detection and Diagnosis Using Neural Networks-I. Steady-State Processes, Comput. Chem. Eng., Vol. 14, 1990.
Ventura, S., M. Silva, D. P. Bendito and C. Hervás, Estimation of Parameters of Kinetic Compartmental Model by Use of Computational Neural Networks, J. Chem. Inf. Comput. Sci., Vol. 37, 1997.
Villard, P., J. Blum, A. Leuba and D. Himmelblau, Practical Issuses in Applying Artificial Neural Networks for Identification in Model-Based Predictive Control, AICHE Annual Meeting, Miami, FL, Nov., 1992.
Vries, W. M. S. C. D. and J. G. P. Born, PCDD/F Emissions Related to the Operating Conditions of the Flue Gas Cleaning System of MWI-amsterdam, Chemosphere, Vol. 32, 1999.
Weber, R., T. Sakurai and H. Hagenmaier, Formation and Destruction of PCDD/PCDF During Heat Treatment of Fly Ash Samples from Fluidized Bed Incinerators, Chemosphere, Vol. 38, 1999.
Weber, R. and H. Hagenmajer, PCDD/PCDDs Formation in Fluidized Bed Incinerator, Chemosphere, Vol. 38, 1999.
Weber, R., T. Takasuga, K. Nagai, H. Shiraishi, T. Sakurai, T. Matuda and M. Hiraoka, Dechlorination and Destruction of PCDD, PCDF and PCB on Selected Fly Ash from Municipal Waste Incineration, Chemosphere, Vol. 46, 2002.
Weigand, W. A. and Q. Chen, Dynamic Optimization of Nonlinear Processes by Combing Neural Net Model with UDMC, AICHE J., Vol. 40, 1994.
Weixiang, Z., C. Dezhao and H. Shangxu, Optimizing Operating Conditions Based on ANN and Modified Gas, Comput. Chem. Eng., Vol. 24, 2000.
Werbos, P., H. T. Su and T. J. McAvoy, Long-Term Predictions of Chemical Processes Using Recurrent Neural Networks, Ind. Eng. Chem. Res., Vol. 31, 1992.
William H. V., Optimizing Combustion with Integrated Neural Networks and AI Technologies, Control Eng., July, 1992.
Wong, W. Y., Y. Lu, V. S. Nasserzadeh, J. Swithenbank, T. Shaw and M. Madden, Experimental Investigation Into the Incineration of Wool Scouring Sludges in a Novel Rotating Fluidized Bed, Journal of Hazardous Materials, B73, 2000.
Wu, W. Z., K. W. Schramm, B. Henkelmann, Y. Xu, Y. Y. Zhang and A. Kettrup , Comparative Extraction of Polychlorinated Dibenzo-p-dioxins and Dibenzofurans (PCDD/Fs) from a Variety of Solid Samples, Chemosphere, Vol. 33, 1996.
Yuichi, M., K. Yoshimitsu, F. Hitoshi and N. Eiichiro, Dynamic Characteristic Analysis and Combustion Control for a Fluidized Bed Incinerator, Control Eng. Practice, Vol. 6, 1998.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top