跳到主要內容

臺灣博碩士論文加值系統

(3.235.227.117) 您好!臺灣時間:2021/08/01 23:06
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:楊盛耀
研究生(外文):Sheng Yao Yang
論文名稱:利用氮化濺鍍調節鉬金屬堆疊閘極之臨界電位
論文名稱(外文):The Threshold Voltage Adjustment of Molybdenum Metal Stack Gate by Nitrogen-Controlled Sputtering
指導教授:賴朝松
指導教授(外文):Chao Sung Lai
學位類別:碩士
校院名稱:長庚大學
系所名稱:半導體科技研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2003
畢業學年度:91
語文別:中文
論文頁數:58
中文關鍵詞:金屬功函數片電阻平帶電壓氧化層漏電流
外文關鍵詞:metal work functionsheet resistanceflatband voltageoxide leakage
相關次數:
  • 被引用被引用:0
  • 點閱點閱:152
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
為了降低成本,以及增加積體電路的速度及元件的密度,元件的尺寸的縮小是必然的趨勢。而當閘極長度縮減為100nm 以下時,在傳統複晶矽閘電極之複合式金氧半電晶體,將受限於硼離子的穿遂效應,以及高片電阻和複晶矽的空乏效應。這些效應將使得元件的特性變差。金屬閘極可以有效的改善這些問題,因為它具有低的閘極片電阻,以及它不具空乏效應。
鉬具有高熔點和低阻抗。在先前所發表的研究可以知道,具 (110) 晶格方向的鉬金屬可以被使用於複合式金氧半電晶體其具有高界電常數的閘極介電層,以及將氮離子佈植進入鉬金屬薄膜可以有效的改變鉬金屬的功函數。在本論文主要是利用濺鍍的新方法來形成鉬以及鉬氮化合物的疊閘極。在濺鍍過程中加入氬氣和氮氣兩種氣體混盒。在濺鍍成沉積鉬以及鉬氮化合物後加以高溫退火製程,藉以調變平帶電壓以及元件的電性。

It is necessary to scale down of device with increasing device density and speed of integrated circuit and low cost. When the channel length below 100nm, the conventional CMOS devices with poly-gate electrode were confined to boron penetration, high sheet resistance, and poly-depletion. These will degrade the device performance. Metal gate has effective to improve those, because they provide for low gate sheet resistance, and they don’t have depletion effects.
Molybdenum has high melting point and low resistance. In earlier publication, Mo (110) crystallographic texture has been use with high permittivity gate dielectrics in CMOS device and nitrogen ion implantation into the Mo film was shown to be effective for adjusting the Mo work function. In this thesis, we used new approach by sputtering the MoNx/Mo films directly to form stack gate electrode by reactive with Ar and N2 gas mixture. And the anneal process of the MoNx/Mo stack gate material post the sputtering changes the flatband voltage and electrical characterization.

Chinese Abstract
English Abstract
Acknowledgment
Contents
Figure Captions
Table Captions
Chapter 1 Introduction……………………………………….…1
1.1 Background……………………………………1
1.2 Review of Related Studies………………….…2
1.3 Objective of this Thesis……………………….3
Chapter 2 The Characterization of Molybdenum Metal Gate.4
2.1 Experiment process flow………………………...4
2.2 SIMS and SEM………………………………….6
2.3 XRD analysis……………………………………7
2.4 The Influence of the Nitrogen to Metal Resistance
2.4.1 Previous Research………………………….7
2.4.2 The Resistivity of Molybdenum Stack Gate..9
Chapter 3 The Reliability for Nitrogen- Controlled Metal Gate
3.1 Metal Work function……………………………23
3.2 The Approaches of Metal Work function Different Measurement………………………………..24
3.2.1 Two C-V Methods……………………….24
3.2.2 Experiment Process Flow………………..25
3.2.3 Measurements……………………………25
3.2.4 Flatband Voltage as a Function of Oxide Thickness………………………………27
3.2.5 Experiment Process Flow………………..27
3.2.6 Measurements……………………………28
3.2.7 Photoemission……………………………29
3.3 The Variation of Flatband Voltage and Electric Breakdown Field in Mo / MoNx Stack Gate…29
3.3.1 Thermodynamic Stability………………..30
3.3.2 Nitrogen Effect…………………………..31
3.4 Barrier Height…………………………………31
3.5 Oxide Leakage……………………………..…32
Chapter 4 Summary and Conclusion……………………….55
References

[1] K. S. Krisch, et al., “Impact of Boron Diffusion through O2 and N2O Gate Dielectrics on the Process Margin of Dual-Poly Low Power CMOS,” IEDM pp.325-328(1994)
[2] Takayuki Aoyama, et al., “Flat-band Voltage Shifts in P-MOS Devices Caused by Carrier Activation in P+-Polycrystalline Silicon and Boron Penetration,” IEDM Tech. pp. 627-630(1997).
[3] Ming-yin Hao, et al., “Impact of Boron Penetration at P+-poly/Gate Oxide Interface on Deep-submicron Device Reliability for Dual-Gate CMOS Technologies,” IEEE Electron Device Letters, VOL18, NO.5, May 1997, pp. 215-217.
[4] B. Y. Kim, et al., “Impact of Boron Penetration on Gate Oxide Reliability and Device Lifetime in P+-poly PMOSFETs, IEEE , pp.287-291(1997)
[5] Y. Taur, T. H. Ning, “Fundamental of MODERN VLSI DEVICES “.
[6] Y. Taur, et al., “ CMOS scaling into the nanometer regime,” Proc. IEEE, vol. 85, pp. 486-504, Apr. 1997.
[7] Indranil De, et al., “ Impact of gate workfunction on device performance at the 50 nm technology node,” Solid-State Electron., 44, pp.1077-1080(2000).
[8] Q. Lu, R. Lin, et al., “Molybdenum metal gate MOS technology for post-SiO2 gate dielectrics,” IEDM Tech. Dig., 2000, pp. 641-644.
[9] H. Z. Massoud, “ Charge transfer dipole moments at the Si-SiO2 interface,“ J. Appl. Phys., vol. 63(no.6), pp.2000-2005, March (1988)
[10] R. C. Keller and C. R. Helms, ” Calculations of the barrier height and charge distribution of a metal-dielectric interface,” J. Vac. Sci. Tech. A, vol. 10 (no.4), pp.775-780, July/Aug 1992.
[11] Yee-Chia Yeo, et al., “Dual-Metal Gate CMOS Technology with Ultrathin Silicon Nitride Gate Dielectric,” IEEE Electron Device Letters, VOL22, NO.5, May 2001, pp. 227-229.
[12] Q. Lu, R. Lin, et al., “Metal Gate Work Function Adjustment for Future CMOS Technology,” in VLSI Technology Digest, pp.45-46. IEEE, New York (2001).
[13] P. Ranade, et al., “Molybdenum as a gate electrode for deep sub-micron CMOS thchnology,” in MRS Symp. Proc., vol. 611, San Francisco, CA, Spring 2000.
[14] Q. Lu, R. Lin, et al., “Dual-Metal gate technology for deep sub-micron CMOS transistors,” Symp. on VLSI Tech., pp. 72-73, 2000.
[15] E. H. Nicollian, J. R. Brews., 1991, MOS Physics and Technology, John Wiley & Sons, Inc.
[16] P. Olivo, et al., “ Determination of the Si-SiO2 Barrier Height from the Fowler-Nordheim Plot,” IEEE Electron Device Letters, VOL12, NO.11, NOV 1991, pp. 62

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top