跳到主要內容

臺灣博碩士論文加值系統

(3.236.110.106) 您好!臺灣時間:2021/07/24 05:58
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:沈暉堂
研究生(外文):HUI-TANG SHEN
論文名稱:砷化銦/砷化鎵量子點載子橫向傳輸特性之研究
論文名稱(外文):Lateral Carrier Transfer Characteristics in InAs/GaAs Quantum Dot Heterosystem
指導教授:林瑞明林瑞明引用關係倪澤恩
指導教授(外文):RAY-MING LINTZER-EN NEE
學位類別:碩士
校院名稱:長庚大學
系所名稱:半導體科技研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2003
畢業學年度:91
語文別:中文
論文頁數:67
中文關鍵詞:量子點光激光譜載子橫向傳輸砷化銦
外文關鍵詞:quantum dotphotoluminescencelateral carrier transferInAs
相關次數:
  • 被引用被引用:1
  • 點閱點閱:93
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
在本論文中,我們藉由變溫及變功率光激光譜(photoluminescence spectra)分析砷化銦/砷化鎵量子點異質結構中,熱激發載子(thermal-excited carrier)在量子點間的橫向傳輸行為。
本實驗中,我們利用有機金屬化學氣相磊晶(MOCVD)系統成長高密度(約1010cm-1)砷化銦量子點結構。透過穿透式電子顯微鏡可以發現,在磊晶過程中,不同的成長中斷時間(growth interruption time),明顯導致了兩片樣品在量子點大小、間距及密度上的差異。而配合光激光譜的量測結果,我們發現光譜半高寬隨溫度變化可以歸因於熱激發載子在相鄰量子點之間三個不同溫度階段的傳輸行為表現:
在低溫及低激發功率時,載子是隨機分佈在量子點內,因此,光譜半高寬值可以反應出量子點尺寸大小的分佈狀況。而由實驗量測所得結果發現,在低激發功率條件下,兩片樣品的激發態半高寬分別為88 meV與79 meV,此一差異可歸因於成長中斷時間的增加,導致量子點尺寸分佈(quantum dot size distribution)更均勻,進而使得兩片樣品在光譜半高寬上表現出差異。隨著溫度的上升,半高寬明顯的下降,主要是由於載子受熱激發,經由量子點間的橫向傳輸(carrier lateral transfer),而獲得重新分佈,此時,載子的分佈會造成整體量子點系統達到準穩態的能量分佈。當溫度持續升高,半高寬也隨之增加,顯示電子與聲子散射(electron-phonon scattering )機制與載子的熱分佈(thermal distribution)影響了量子點的光學特性表現。
此外,隨著激發雷射功率的增加,可以發現出現最小半高寬的溫度點由175 K降至110 K,顯示由於雷射激發功率的增加,造成區域溫度的增加,使得載子在較低的溫度即具有足夠的熱動能透過橫向傳輸達到最小半高寬的載子分佈。而值得注意的是,當量子點的大小越不均勻,不同激發功率所造成的最小半高寬差異也越大,顯示熱載子的橫向傳輸因熱效應而增加,使得次要大小(minor dot size)的量子點對半高寬的影響增加。
綜合實驗的結果發現,量子點表面型態的差異,會經由熱激發載子於量子點間的橫向傳輸機制而表現在光激光譜的特性上。
Carrier dynamics for quantum dot (QD) heterosystem are the subject of intense material and device research. Photoexcitation dependence of inter-dot lateral carrier transport has been studied by temperature-dependent photoluminescence (PL). For comparison, two InAs/GaAs QD samples with different dot-size as well as size uniformity were carried out by metal-organic chemical vapor epitaxy. Considering the thermal-sensitive PL spectra, the so-called V-shape temperature dependent linewidth behaviors were characterized to the corresponding carrier dynamic processes. At low temperatures, the full width at half maximum (FWHM) of 88 meV and 79 meV for the two QD samples, respectively, reveals that the optimal growth conditions improve the size uniformity. Meanwhile, the dot-size distribution is the dominant contribution to the inhomogeneous broadening of PL spectra. With increasing the temperatures as well as the excitation power, the so-called negative temperature phenomena are by far observed. The narrowing of the FWHM for all confined states is associated with the lateral thermally activated carrier transfer between inter-dots at the temperature range of 110 and 175 K. The photo-excited carriers have enough thermal energy not only to overcome the matrix barriers but also to redistribute to the local minimum states. Significantly, the thermalization of carriers in the less uniformity heterodot system is profound, while the better uniformity one exhibits more thermal-stability. As the temperature further increases, the FWHM of excited state extends once again, since both the electron-phonon scattering and thermal redistribution mechanisms dominate the carrier relaxation processes. All experimental results are consistent with the observation of transmission electron microscopy images.
中文摘要……………………………………………………………... xi
英文摘要……………………………………………………………. xiii
第一章 緒論………………………………………………………….. 1
1.1 前言…………………………………………………………. 1
1.2 研究動機……………………………………………………. 2
1.3 論文架構與章節安排………………………………………. 3
第二章 基本原理與文獻回顧……………………………………….. 5
2.1 量子侷限效應………………………………………………. 5
2.2 量子點成長機制……………………………………………. 7
2.3 應變對半導體能帶結構的影響……………………………. 9
2.4 相關文獻回顧……………………………………………... 12
第三章 實驗原理與方法…………………………………………… 22
3.1 樣品成長…………………………………………………... 22
3.2穿透式電子顯微鏡量測…….……………………………... 23
3.3 光激光譜量測……………………………………………... 23
3.3.1 光激致光原理……………………………………… 24
3.3.2 實驗方法…………………………………………… 24
3.3.3 儀器架設…………………………………………… 25
第四章 結果與討論………………………………………………… 29
4.1 穿透式電子顯微鏡平面影像分析………………………... 29
4.2 光激光譜結果分析………………………………………... 30
4.2.1 變溫光激光譜……………………………………… 30
4.2.2 光激光譜能量積分強度…………………………… 31
4.2.3 光激光譜之放射能量變化………………………… 32
4.2.4 變功率光激光譜分析……………………………… 35
4.2.5 光激光譜半高寬與溫度及激發功率的相依關係… 38
第五章 結論………………………………………………………… 60
參考文獻…………………………………………………………….. 64
[1] Y.T. Dai, J.C. Fan, Y.F. Chen, R.M. Lin, S.C. Lee, and H.H. Lin, ”Temperature dependence of photoluminescence spectra in InAs/GaAs quantum dot superlattices with large thicknesses”, J. Appl. Phys. 82, 4489-4492 (1997).
[2] J.M. Gerard, J.B. Genin, J. Lefebvre, L.M. Moisom, N. Lebouche and F. Barthe, “Optical investigation of the self-organized growth of InAs/GaAs quantum boxes”, J. Crystal Growth 150, 351-356 (1995).
[3] Yu.I. Mazur, X. Wang, Z.M. Wang, G.J. Salamo, M. Xiao, and H. Kissel, “Photoluminescence study of carrier transfer among vertically aligned double-stacked InAs/GaAs quantum dot layers”, Appl. Phys. Lett. 81, 2469-2471 (2002).
[4] Motlan and E.M. Goldys, “Photoluminescence of multilayer GaSb/GaAs self-assembled quantum dots grown by metalorganic chemical vapor deposition at atmospheric pressure”, Appl. Phys. Lett. 79, 2976-2978 (2002).
[5] G.G. Tarasov, Yu.I. Mazur, Z.Ya. Zhuchenko, A. Maaßdorf, D. Nickel, J.W. Tomm, H. Kissel, C. Walther, and W.T. Masselink, “Carrier transfer in self-assembled coupled InAs/GaAs quantum dots”, J. Appl. Phys. 88, 7162-7170 (2000).
[6] M. Strassburg, M. Dworzak, H. Born, R. Heitz, A. Hoffmann, M. Bartels, K. Lischka, D. Schikora and J. Christen, “Lateral redistribution of excitons in CdSe/ZnSe quantum dots”, Appl. Phys. Lett. 80, 473-475 (2002).
[7] X. Q. Zhang, S. Ganapathy, H. Kumano, K. Uesugi, and I. Suemune, “Photoluminescence study of InAs quantum dots embedded in GaNAs strain compensating layer grown by metalorganic-molecular-beam epitaxy”, J. Appl. Phys. 92, 6813-6818 (2002).
[8] J.Z. Wang, Z. Yang, C.L. Yang, Z.G. Wang, “Photoluminescence of InAs quantum dots grown on GaAs surface”, Appl. Phys. Lett. 77, 2837-2839 (2002).
[9] S. Sanguinetti, T. Mano, M. Oshima, T. Tateno, M. Wakaki, and N. Koguchi, “Temperature dependence of the photoluminescence of InGaAs/GaAs quantum dot structures without wetting layer”, Appl. Phys. Lett. 81, 3067-3069 (2002).
[10] Y.C. Zhang, C.J. Huang, F.Q. Liu, B. Xu, J. Wu, Y.H. Chen, D. Ding, W.H. Jiang, X.L. Ye, and Z.G. Wang, “Thermal redistribution of photocarriers between bimodal quantum dots”, J. Appl. Phys. 90, 1973-1976 (2001).
[11] C. Lobo, R. Leon, S. Marcinkevicius, X. Z. Liao, J. Zou, and D. J. H. Cockayne, “Inhibited carrier transfer in ensembles of isolated quantum dots”, Phys. Rev. B 60, 16647—16651 (1999).
[12] H.L. Wang, D.Ning and S.L. Feng, “Temperature dependence of the optical properties of InAs/GaAs self-organized quantum dots with bimodal size distribution”, J. Cryst. Growth 209, 630-636 (1995).
[13] L. Jacak, P. Hawrylak and A. Wojs, ”Quantum Dots”, (1998).
[14] Dieter Bimberg, Marius Grundmann and Nikolai N. Ledentsov, “Quantum Dot Heterostructures”, (1999).
[15] Shun Lien Chuang, “Physics of optoelectronic devices”, (1995).
[16] L.A. Coldren and S.W. Corzine, “Diode Lasers and Photonic Integrated Circuits”, (1995).
[17]李世鴻, “半導體工程原理”, 全威圖書 (1997).
[18] Mitsuo Fukuda, “Optical Semiconductor Devices”, (1999).
[19] M. Hjiri, F. Hassen, H. Maaref, “Temperature and excitation dependence of the luminescence spectra of InAs quantum dots”, Mater. Sci. Eng. B 88, 255-258 (2002).
[20] Hao Lee, Weidong Yang, and Peter C. Sercel, “Temperature and excitation dependence of photoluminescence line shapein InAs/GaAs quantum-dot structures”, Phys. Rev. B 55, 9757—9762 (1997).
[21] Z. Y. Xu, Z. D. Lu, X. P. Yang, Z. L. Yuan, B. Z. Zheng, J. Z. Xu, W. K. Ge, Y. Wang, J. Wang, and L. L. Chang, “Carrier relaxation and thermal activation of localized excitons in self-organized InAs multilayers grown on GaAs substrates”, Phys. Rev. B 54, 11528—11531 (1996).
[22] S. Sanguinetti, M. Henini, M. Grassi Alessi, M. Capizzi, P. Frigeri and S. Franchi, “Carrier thermal escape and retrapping in self-assembled quantum dots”, Phys. Rev. B 60, 8276—8283 (1999).
[23] L. Brusaferri, S. Sanguinetti, E. Grilli, M. Guzzi, A. Bignazzi, F. Bogani, L. Carraresi, M. Colocci, A. Bosacchi, P. Frigeri, and S. Franchi, “Thermally activated carrier transfer and luminescence line shape in self-organized InAs quantum dots”, Appl. Phys. Lett. 69, 3354-3356 (1996).
[24] H.Y. Liu, B. Xu, Q. Gong, D. Ding, F.Q. Liu, Y.H. Chen, W.H. Jiang, X.L. Ye,Y.F. Li, Z.Z. Sun, J.F. Zhang, J.B. Liang, Z.G. Wang, “Temperature and excitation power dependence of the optical properties of InAs self-assembled quantum dots grown between two Al0.5Ga0.5As confining layers”, J. Crystal Growth 210, 451-457 (1995).
[25] Ming-Chin Chen, Hao-Hsiung Lin, and Chih-Wei Shie, “Self-organized InAs/GaAs quantum dots grown by gas source molecular beam epitaxy”, J. Appl. Phys. 83, 3061-3064 (1998).
[26] S. Hinooda, S. Loualiche, B. Lambert, N. Bertru, M. Paillard, X. Marie, and T. Amand, “Wetting layer carrier dynamics in InAs/InP quantum dots”, Appl. Phys. Lett. 78, 3052-3054 (2001).
[27] Luo, X.D.; Xu, Z.Y.; Wang, Y.Q.; Wang, W.X.; Wang, J.N. and Ge, W.K., “Abnormal effect of growth interruption on GaSb quantum dots formation grown by molecular beam epitaxy”, J. Cryst. Growth 247, 99-104 (2003).
[28] L. Müller-Kirsch, R. Heitz, U. W. Pohl, and D. Bimberg, “Temporal evolution of GaSb/GaAs quantum dot formation”, Appl. Phys. Lett. 79, 1027-1029 (2001).
[29] Tomoya Ogawa, Masashi Akabori, Junichi Motohisa, and Takashi Fukui, “Effect of growth interruption time and growth temperature on the natural formation of InGaAs/AlGaAs quantum disk structures on GaAs (311)B substrates”, J. Appl. Phys. 87, 745-749 (2000).
[30] Y. Tang, D. H. Rich, I. Mukhametzhanov, P. Chen, and A. Madhukarm, “Self-assembled InAs/GaAs quantum dots studied with excitation dependent cathodoluminescence”, J. Appl. Phys. 84, 3342-3348 (1998).
[31] J.I. Pankove, “Optical Processes in Semiconductors”, (1975).
[32] Y.P. Varshni, Physica(Amsterdam) 34,149 (1967).
[33] Ray-Ming Lin, Tzer-En Nee, Mei-Ching Tsai, Yuan-Hao Chang, Ping-Lin Fan and Rong-Seng Chang, “Thickness-dependent renormalization of strain effects on self-organized InAs quantum dots grown on GaAs”, J. Vac. Sci. Technol., A 20, 1125-1127 (2002).
[34] D.C. Reynolds, D.C. Look, and B. Jogai, “Combined effects of screening and band gap renormalization on the energy of optical transitions in ZnO and GaN”, J. Appl. Phys. 88, 5760-5763 (2000).
[35] M. Grundmann and D. Bimberg, “Theory of random population for quantum dots”, Phys. Rev. B 55, 9740—9745 (1997).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊