跳到主要內容

臺灣博碩士論文加值系統

(3.235.120.150) 您好!臺灣時間:2021/08/03 05:14
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:楊明正
研究生(外文):Ming-Jeng Yang
論文名稱:窄寬度p型場效應電晶體之熱載子效應及負偏壓溫度不穩定性
論文名稱(外文):Hot-Carrier Effect and Negative Bias Temperature Instability of Narrow-Width pMOSFET's
指導教授:楊濬哲賴朝松
指導教授(外文):Jiuun-Jer YangChao Sung Lai
學位類別:碩士
校院名稱:長庚大學
系所名稱:半導體科技研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2003
畢業學年度:91
語文別:英文
論文頁數:97
中文關鍵詞:熱載子效應負偏壓溫度不穩定性負偏壓溫度不穩定性通道寬度相關窄通道寬度p 型場效應電晶體
外文關鍵詞:Hot-Carrier EffectNegative Bias Temperature InstabilityNBTIWidth DependenceNarrow-WidthpMOSFET's
相關次數:
  • 被引用被引用:0
  • 點閱點閱:200
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
淺溝槽絕緣技術是為用來建構元件與原件間絕緣的主流技術,它可用來增進面積的使用率而製造高密度的電路,而且一般出現在局部氧化矽絕緣技術的次臨界電流特性突起和鳥嘴負效應都得以獲得解決。但由於存在動作區的製程引發殘餘機械應力伴隨著熱載子效應通常使元件不穩定而且降低效能。隨著元件的尺寸微縮,導源於熱載子效應造成不穩定和元件尺寸大小間的關係之探查是很重要的。
論文中淺溝槽絕緣的p型場效電晶體的尺寸寬度相關的熱載子效應倍探查了。熱載子效應造成通道熱電洞注入和正電性氧化層陷阱而引發的效能降低被觀察到。導源於負電性氧化層陷阱和介面狀態產生而造成的n型場效電晶體效能衰退再一次地被驗證,n型場效電晶體和p型場效電晶體的效能衰退隨著元件寬度變窄而更益嚴重,汲極電流的效能衰退也隨著元件寬度變窄而更益嚴重。用在有電荷陷在氧化層的通道長度變短效應也可應用在所謂的通道長度變長效應上。
除了不穩定性主要由熱載子效應的汲極偏壓引發外,淺溝槽絕緣的p型場效電晶體的寬度相關的負偏壓溫度不穩定性亦被探查研究。負偏壓溫度加速測試引發元件效能退化被推論是由於閘極熱活化電子入射至閘氧化層而且游離化電洞陷在閘氧化層內所造成的。p型場效電晶體效能退化也隨著通道寬度越窄而益形嚴重。

The shallow-trench-isolation (STI) technology is the mainstream to construct the insulation between devices. STI can improve utility rate of area to fabricate high- density circuit, and the effect of the sub-threshold hump and bird’s beak in LOCOS (Local Oxidation of Silicon) has got solution. But the process induced residual mechanical stress existent in active area accompanied hot-carrier effect usually make device unstable and degrade devices performance. Following with devices shrinking, the investigation of the instability due to hot-carrier effect related to device dimension is important.
In the thesis, width dependent hot-carrier degradation of shallow-trench-isolated pMOSFET’s was investigated. Hot-carrier induced degradation due to channel hot hole injection and positive oxide traps was observed. The degradation mode of nMOSFET’s due to negative oxide traps and interface state generation is again confirmed. The degradation of both n- and pMOSFET’s are more serious as channel width narrower. The drain current degradation is also more serious as channel width narrower. The channel shortening effect used in oxide charge trapping can also apply to positive oxide traps as channel prolonging effect.
Besides the instability mainly caused from drain bias of hot-carrier effect, width dependent negative bias temperature instability (NBTI) of shallow-trench-isolated pMOSFET’s was also investigated. NBT stress induced degradation due to gate thermal activated electron injection and ionized first holes trapped in oxide were inferred. The degradation of pMOSFET’s is more serious as channel width narrower.

Table of Contents
Chinese Abstract vi
English Abstract viii
Table of Contents x
Figure Captions xi
CHAPTER I Introduction …………………………………………… 1
1.1 Background ………………………………………………………… 1
1.2 Review of Related Studies …………………………………… 3
1.2 Objective of the Study ………………………………………… 6
CHAPTER II Preparation of Measurements and Programming …… 9
2.1 Monitored Parameters and Measurement criteria …………… 9
2.2 Experimental Setup ……………………………………………… 12
2.3 Stress Bias Conditions Determination ……………………… 13
CHAPTER III Results and Discussions of Hot-Carrier Effect of Narrow-Width pMOSFET’s …………………………………………… 24
3.1 Basic I-V Characteristic Shifts …………………………… 25
3.2 Width Dependent Parameter Degradation …………………… 26
3.3 Mechanism of Width Dependent Hot-Carrier Induced Degradation …………………………………………………………… 26
CHAPTER IV Results and Discussions of Negative Bias Temperature Instability of Narrow-Width pMOSFET’s ………… 55
4.1 Basic I-V Characteristic Shifts …………………………… 55
4.2 Width Dependent Parameter Degradation …………………… 56
4.3 Temperature Dependent Parameter Degradation …………… 62
CHAPTER V Summaries and Conclusions ………………………… 93
References …………………………………………………………… 94

[1] Prasad Chaparala, James Shibley and Paul Lim, “Threshold Voltage Drift in PMOSFETS due to NBTI and HCI”, Integrated Reliability Workshop Final Report, 2000 IEEE International, p. 95
[2] Y. F. Chen, M. H. Lin, C. H. Chou, W. C. Chang, S. C. Huang, Y. J. Chang, K. Y. Fu, M. T. Lee, C. H. Liu, and S. K. Fan, “Negative Bias Temperature Instability (NBTI) in Deep Sub-micron P+-gate pMOSFETs”, Integrated Reliability Workshop Final Report, 2000 IEEE International, p. 98
[3] Toyoji Yamamoto, Ken’ichi Uwasawa and Tohru Mogami, “Bias Temperature Instability in Scaled p+ Ploysilicon Gate p-MOSFET’s”, IEEE Transactions on Electron Devices, vol. 46, May 1999, p. 921
[4] Jiro Ushio, Keiko Kushida-Abdelghafar, and Takuya Maruizumi, “Interface Structure Generated by Negative-Bias Temperature Instability in Si/SiO2 and Si/SiOxNy Interface”, Semiconductor Device Research Symposium, 2001 International, p. 158
[5] Tai-Kyung Kim, Do-Hyung Kim, Jae-Kwan Park, Tai-Su Park, Young-Kwan Park, Hoong-Joo Lee, Kang-Yoon Lee, Jeong-Taek Kong, and Jong-Woo Park, “Modeling of Cumulative Thermo-Mechancal Stress(CTMS) Produced by the Shallow Trench Isolation Process for 1Gb DRAM and beyond”, IEDM 98, p.145
[6] Akemi Hamada, Takeharu Furusawa and Eiji Takeda, “A New Aspect on Mechanical Stress Effects in Scaled MOS Devices”, 1990 Symposium on VLSI Technology, p. 113
[7] Akemi Hamada, Takeharu Furusawa, Naoto Saito and Eiji Takeda, “A New Aspect on Mechanical Stress Effects in Scaled MOS Devices”, IEEE Transactions on Electron Devices, vol. 38, April 1991, p.895
[8] Kazunari Ishimaru, Jone F. Chen, and Chenming Hu, “Channel Width Dependence of Hot-Carrier Induced Degradation in Shallow Trench Isolated PMOSFET’s”, IEEE Transactions on Electron Devices, vol.46, July 1999, p1532
[9] Steve S. Chung, S. —J. Yang, and J. —J. Yang, “A New Physical and Quantitative Width Dependent Hot Carrier Model for Shallow-Trench- Isolated CMOS Devices”, Reliability Physics Symposium, 2001. Proceedings. 39th Annual. 2001 IEEE International , p. 419
[10] Steve S. Chung, Shang-Jr Chen, Wen-Jei Yang, Cherng-Ming Yih and Jiuun-Jer Yang, “New Degradation Mechanisms of Width-Dependent Hot Carrier Effect in Quarter-Micron Shallow-Trench-Isolated p-Channel Metal-Oxide-Semiconductor Field-Effect-Transistors”, Jpn. J. Appl. Phys., Vol. 40, January 2001, p. 69
[11] Fumiomo Matsuoka, Hiroshi Iwai, Hiroyuki Hayashida, Kaoru Hama, Yoshiaki Toyoshima, and Kenji Maeguchi, “Analysis of Hot-Carrier- Induced Degradation Mode on pMOSFET’s”, IEEE Transactions on Electron Devices, vol. 37, June 1990, p. 1487
[12] Y. —H. Lee, K. Wu, T. Linton, N. Mielke, S. Hu, and B, Wallace, “Channel-Width dependence Hot-Carrier Degradation of Thin-Gate pMOSFETs”, Reliability Physics Symposium, 2000. Proceedings. 38th Annual. 2000 IEEE International , p. 77
[13] M. Bourcerie, B. S. Doyle, J. —C. Marchetaux, Alain Boudou, and H. Mingam, “Hot-Carrier Stressing Damage in Wide and Narrow LDD NMOS Transistors”, IEEE Electron Device Letters, vol. 10, March 1989, p. 132
[14] Jone F. Chen, Kazunari Ishimaru, and Cheming Hu, “Enhanced Hot- Carrier Induced Degradation in Shallow Trench Isolated Narrow Channel PMOSFET’s”, IEEE Electron Device Letters, vol. 19, September 1998, p. 332
[15] Brain S. Doyle, and Kaizad R. Mistry, “The Characterization of Hot- Carrier Damage in p-Channel Transistors”, IEEE Transactions on Electron Devices, vol. 40, January 1993, p. 152
[16] Naoyuki Shigyo, Sanae Fukuda, Tetsunori Wada, Katsuhiko Hieda, Takeshi Hamamoto, Hidehiro Watanabe, Kazumasa Sunouchi, and Hiroyuki Tango, “Three-Dimensional Analysis of Subthreshold Swing and Transconductance for Fully Recessed Oxide (Trench) Isolated 1/4- mm-Width MOSFET’s”, IEEE Transactions on Electron Devices, vol. 35, July 1988, p. 945
[17] R. Woltjer and G. M. paulzen, “Improved Prediction of Interface- Trap Generation in NMOST’s”, IEEE Electron Device Letters, vol. 15, January 1994, p. 4
[18] Wen-Kuan Yeh, Wen-Han Wang, Yean-Kuen Fang, and Fu-Liang Yang, “Temperature Dependence of Hot-Carrier-Induced Degradation in 0.1 mm SOI nMOSFETs With Thin Oxide”, IEEE Electron Device Letters, vol. 23, July 2002, p. 425
[19] Chenming Hu, Simon C. Tam, Fu-Chieh Hsu, Ping-Keung Ko, Tung-Yi Chan, and Kyle W. Terrill, “Hot-Electron-Induced MOSFET Degradation-Model, Monitor, and Improvement”, IEEE Transactions on Electron Devices, vol. Ed-32, February 1985, p. 375
[20] Simon Tam, Ping-Keung Ko, and Chenming Hu, “Lucky-Electron Model of Channel Hot-Electron Injection in MOSFET’s”, IEEE Transactions on Electron Devices, vol. Ed-31, September 1984, p. 1116
[21] M. Nishigohri, K. Ishimaru, M. Takahashi, Y. Unno, Y. Okayama, F. Matsuoka, and M. Kinugawa, “Anomalous hot-carrier induced degradation in very narrow channel nMOSFET’s with STI structure,” in IEDM Tech. Dig., 1996, p. 881
[22] M. Bourcerie, B. S. Doyle, J. —C. Marchetaux, Alain Boudou, and H. Mingam, “Hot-Carrier Stressing Damage in Wide and Narrow LDD NMOS Transistors”, IEEE Electron Device Letters, Vol.10, Mar 1989, P. 132
[23] Y. —H. Lee, K. Wu, T. Linton, N. Mielke, S. Hu, and B. Wallace, “Hot-carrier stressing damage in wide and narrow LDD NMOS transistors”, IEEE Electron Device Letters, Vol.10, Mar 1989, P. 132

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top