跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.84) 您好!臺灣時間:2024/12/03 21:53
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:王崇富
研究生(外文):Chung-Fu Wang
論文名稱:具環型缺口金屬圓柱承受異相多軸向負荷下之低週次疲勞壽命實驗與分析
論文名稱(外文):Experimental Analysis of Low Cycle Fatigue Life for Cylindrical Specimens with Circumferential Grooves Under Out-of-Phase Multiaxial Loading
指導教授:任貽明
指導教授(外文):Yi-Ming Jen
學位類別:碩士
校院名稱:中華大學
系所名稱:機械與航太工程研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2003
畢業學年度:91
語文別:中文
論文頁數:88
中文關鍵詞:環型缺口應力集中多軸疲勞異相裂縫起始壽命臨界平面
外文關鍵詞:circumferential groovestress concentrationmultiaxial fatigueout-of-phasecrack initiation lifecritical plane
相關次數:
  • 被引用被引用:2
  • 點閱點閱:258
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
在工業界中,有許多的機械元件為了符合需求,在幾何外型上經常有溝、槽等缺口情況發生,加上承受雙軸向或多軸向的變動負荷,在分析預測疲勞行為上較為複雜,因此本文的目的主要在探討環形缺口試桿在承受雙軸向疲勞時,其疲勞裂縫起始壽命及行為。其中異相負荷的裂縫起始疲勞壽命比同相負荷裂縫起始疲勞壽命較短,證明在異相負荷下,材料有額外的硬化現象發生;由於缺口外型會造成應力集中效應,因此使用有限元素法來描述缺口根部的局部應力應變行為;在預測模型方面,本文選用Brown and Miller model、 Lohr and Ellison model、 Fatemi-Socie model及Smith,Watson and Topper model四種預測模型,配合平滑試桿軸向負荷資料來分析疲勞裂縫起始壽命;由於預測模式主要使用在應變空間裡的「臨界平面」概念,因此本文使用程式語言計算出臨界平面的位置及損害參數,藉此比較各個預測模型的準確度;而觀察各種不同形式的疲勞負荷所造成的試桿破斷面差異,也是本文將探討的主題之一。

The crack initiation life of cylindrical specimens with circumferential groove under out-of-phase multiaxial cyclic loading was studied. It is found that the crack initiation life under out-of-phase loading is longer than that under in-phase loading for the evidence of addition hardening effect. To find the local stress/strain history at the stress concentrations, finite element method was used to estimate the local behavior under the cyclic multiaxial loading. Four critical plane approaches; Brown-Miller model, Lohr-Ellison model, Fatemi-Socie model, and Smith-Watson-Topper model, were used to predict the crack initiation life with the assistance of the smooth specimen data. The critical planes for specific models were found by a numerical program in the strain space. Furthermore, the fracture surfaces were also examined in the study.

中文摘要………Ⅰ
英文摘要………Ⅱ
誌謝………Ⅲ
目錄………Ⅵ
圖表目錄………Ⅶ
符號說明………Ⅹ
第一章 序論………1
1-1前言………1
1-2研究方法………2
1-3章節概述………3
第二章 文獻回顧………5
2-1平滑試桿多軸疲勞………5
2-1-1等效應力(應變)法………5
2-1-2塑性功和能量法………5
2-1-3臨界平面法………5
2-1-4聯合能量/臨界平面法………6
2-2缺口試桿多軸疲勞………6
2-2-1正比型負載………7
2-2-2非正比型負載………7
2-3近年來發展研究………8
2-3-1基於應變量測之疲勞模型………8
2-3-2在正比型負載下之缺口應變分析………8
2-3-3缺口應變分析在非正比型負載之下………9
第三章 實驗內容與程序………11
3-1試桿製作………11
3-2儀器介紹………12
3-3實驗內容及步驟………14
3-3-1機械性質測試………14
3-3-2平滑試桿單軸向低週次疲勞實驗………14
3-3-3缺口試桿異相雙軸向低週次疲勞實驗………15
3-4環狀缺口試桿疲勞起始裂縫之定義………16
第四章 疲勞起始壽命預測模型及理論………20
4-1壽命分析流程………20
4-2模擬分析步驟………21
4-2-1前處理………24
4-2-2求解………25
4-2-3後處理………27
4-2-4彈性應力集中因子之計算………27
4-3臨界平面法………28
4-4臨界平面之決定………30
4-5臨界參數………30
第五章 實驗結果與討論………35
5-1材料之機械性質………35
5-2平滑試桿之軸向基本低週次疲勞實驗結果………35
5-3環狀缺口試桿之異相雙軸向低週次疲勞實驗結果………36
5-4有限元素法分析結果………37
5-5缺口試桿裂縫形成壽命預測之分析………39
5-6裂縫形成壽命預測結果………39
5-7環狀缺口試桿破斷面觀察………40
第六章 結論………81
參考文獻………83

[1] Funchs, H.O. and Stephens, R.I., “Metal Fatigue in Engineering,” John Wiley and Sons, New York, 1980.
[2] Neuber, H., “Theory of stress concentration for shear-strained prismatical bodies with arbitrary nonlinear stress-strain laws,” J. Appl. Mech., Trans. ASME 1961, Vol. E28, pp. 544
[3] Jordan, E.H., Fatigue-multiaxial aspects, “Pressure Vessels and Piping Desing Technology-A Decade of Progress,” American Society of Mechanical Engineers, 1982, pp. 507-518
[4] Little, R.E., A note on the shear stress criterion for fatigue failure under combined stress, “The Aeronautical Quarterly,” February 1969, pp. 57-60
[5] Garud, Y.S., “A new approach to the evaluation of fatigue under multiaxial loading,” J. Engng Mater. Technol 1981, Vol 103, pp. 118-125
[6] Ou, W., Nowack, H. and Peeken, H., “Advanced fatigue analysis(FEMFAT)for arbitrary multiaxial elastic plastic loading conditions,” Proc. 2nd Int. Conf. Low Cycle Fatigue and Elasto-Plastic Behavior of Materials, Elsevier Applied Science, Amsterdam, 1987, pp. 499-505
[7] Tavernelli, J.F. and Coffin, L.F., “Experimental support for generalized equation predicting low cycle fatigue,” Jr J. Basic Engng Trans. ASME 1962, Vol 84, pp. 533-541
[8] Smith, R.W., Hirschberg, M.H. and Manson, S.S., “Fatigue behavior of materials under strain cycling in low and intermediate life range,” NASA TN D-1574, National Aeronautics and Space Administration, April 1963.
[9] Morrow, J., “Cyclic plastic strain energy and fatigue of metals,” Internal Friction Damping and Cyclic Plasticity, ASTM STP378, American Society for Testing and Materials, Philadelphia, 1965, pp. 45-87
[10] Halford, G.R., J. Mater. 1966, Vol 1, pp. 3-18
[11] McDowell, D.L., J. Appl. Mesh. 1985, 52, pp.298-308
[12] Findley, W.N., Coleman, J.J. and Handley, B.C., “Theory for combined bending and torsion fatigue data for 4340 steel,” Proc. Int. Conf. Fatigue of Metals, The Institution of Mechanical Engineers, 1956, pp. 150-157
[13] Brown, M.W. and Miller, K.J., “High temperature low-cycle biaxial fatigue of two steels,” Fatigue of Engineering Materials and Structures, 1979, Vol 1, pp. 217-229
[14] Grubisic, V. and Simburger, A., “Fatigue under combined out-of-phase multiaxial stress,” Fatigue and Testing Design, Vol. 2, Proc. S.E. E. Int. Conf. 5, London, April 1976, pp. 27.1-27.8
[15] Lohr, R.D. and Ellison, E.G., “A simple theory for low cycle multiaxial fatigue,” Fatigue Fracture Engng Mater. Struct. 1980, Vol 3, pp. 1-17
[16] McDiarmid, D.L., “Fatigue under out-of-phase bending and torsion,” Fatigue Fracture Engng Mater. Struct. 1991, Vol 14, pp. 429-453
[17] Fatemi, A. and Socie, D.F., “A critical approach to multiaxial fatigue damage including out-of-phase loading,” Fatigue Fracture Engng Mater. Struct. 1988, Vol 11, pp. 149-166
[18] Socie, D.F., “Critical plane approaches for multiaxial fatigue damage assessment,” Advances in Multiaxial Fatigue, ASTM STP 1191, American Society for Testing and Materials, Philadelphia, 1993, pp. 7-36
[19] Socie, D.F., “Multiaxial fatigue damage models,” J. Engng Mater. Technol. 1987, Vol 109, pp. 293-298
[20] Kim, K.S. and Park, J.C., “Shear strain based multiaxial fatigue parameters applied to variable amplitude loading,” Int. J. Fatigue 1999, Vol 21, pp. 475-483
[21] Glinka, G., Shen, G. and Plumtree, A., “A multiaxial fatigue strain energy density parameter related to the critical plane,” Fatigue Fracture Engng Mater. Struct. 1995, Vol 18, pp. 37-46
[22] Glinka, G., Wang, G. and Plumtree, A., “Mean stress effects in multiaxial fatigue,” Int. J. Fatigue 1995, Vol 18, pp. 755-764
[23] Pan W.F., Hung, C.Y., Chen, L.L., “Fatigue life estimation under multiaxial loadings,” Int. J. Fatigue 1999, Vol 21, pp. 3-10
[24] Varvani-Farahani, A., “A new energy critical plane parameter for fatigue life assessment of various metallic materials subjected to in-phase and out-of-phase multiaxial fatigue loading conditions,” Int. J. Fatigue 2000, Vol 22, pp. 295-305
[25] Shigley, J.E. and Mischke, C.R., “Mechanical Engineering Design,” McGraw-Hill, New York, 1989
[26] Boiler and Pressure Vessel Code, Sec. Ⅲ, DIV. 1, Class 1 Components, Subsection NB, “Rules for Construction of Nuclear Power Plant Components,” ASME, New York, 1988
[27] Takahara, M., Kaneshiro, M. and Endo, T., “Assumptions for estimating the fatigue strength of notched specimens,” Memoirs Kyushu Inst. Technol., Engng, No. 2, March 1972, pp. 55-98
[28] Williams, R.A., Placek, R.J., Klufas, O., Adams, S.L. and Gonyea, D.C., “Biaxial/torsional fatigue of turbine generator rotor steels,” Multiaxial Fatigue, ASTM STP 853, American Society for Testing and Materials, Philadelphia, 1985, pp. 440-462
[29] Gonyea, D.C., “Method for low-cycle fatigue design including biaxial stress and notch effects,” Fatigue at Elevated Temperatures, ASTM STP 520, American Society for Testing and Materials, Philadelphia, 1973, pp. 678-687
[30] Gough, H.J., Proc. Inst. Mech. Engrs 1949, Vol 160, pp. 417-440
[31] Guest, J.J., Proc. Inst. Autom. Engng 1940, Vol 35, pp. 33
[32] Chu, C.C., Conle, F.A. and Bonnen, J.J.F., “Multiaxial stress-strain modeling and fatigue life prediction of SAE axle shafts,” Advances in Multiaxial Fatigue, ASTM STP 1191, American Society for Testing and Materials, Philadelphia, 1993, pp. 37-54
[33] Smith, K.N., Watson, P. and Topper, “A stress-strain function for fatigue of metals,” JMLSA. 1970, Vol 5, pp. 767-778
[34] Borodii, M.V. and Strizhalo, V.A., “Analysis of the experimental data on a low cycle fatigue under nonproportional strain,” Int. J. Fatigue 2000, Vol 22, pp. 275-282
[35] Fatemi, A. and Kurath, P., “Multiaxial fatigue life predictions under the influence of mean-stresses,” J. Engng Mater. Technol. 1988, Vol 110, pp. 380-388
[36] Socie, D.F., Waill, L.A. and Dittmer, D.F., “Biaxial fatigue of inconel 718 including mean stress effects,” Multiaxial Fatigue, ASTM STP 853, American Society for Testing and Materials, Philadelphia, 1985, pp. 463-481
[37] Hoffmann, M. and Seeger, T., “A generalized method for estimating elastic-plastic notch stresses and strains. Part 1 and Part 2,” J. Engng Mater. Technol. 1985, Vol 107, pp. 250-260
[38] Hoffmann, M. and Seeger, T., “Stress-strain analysis and life predictions of a notched shaft under multiaxial loading,” Multiaxial Fatigue:Analysis and Experiments, AE-14. Society of Automotive Engineers, Warrendale, PA, 1989, Vol 22, pp. 544-550
[39] Klann, D.A., Tipton, S.M. and Cordes, T.S., “Notch stress and strain estimation considering multiaxial constraint,” Society of Automotive Engineers, Publication Number 930401;also Trans. SAE. J. Mater. Manuf., 1993, pp. 321-331
[40] Moftakhar, A., Buczynski, A. and Glinka, G., Int. J. Fracture 1995, Vol 70, pp. 357-373
[41] Tipton, S.M. and Nelson, D.V., “Fatigue life predictions for a notched shaft in combined bending and torsion,” Multiaxial Fatigue, ASTM STP 853, American Society for Testing and Materials, Philadelphia, 1985, pp. 514-550
[42] Tipton, S.M., “Cyclic elastic-plastic strain estimation for notched shafts in bending,” Proc. Third Int. Conf. Biaxial/Multiaxial Fatigue, 3-6 April 1989, Stuttgart, West Germany, pp. 15.1-15.20
[43] Hoffman, M., Amstutz, H. and Seeger, T., “Local strain approaches in nonproportional loading,” Fatigue under Biaxial and Multiaxial Loading, ESIS10, Mechanical Engineering Publications, London, 1991, pp. 357-376
[44] Lee, Y.L., Chiang, Y. and Wong, H-H., J. Engng Mater. Technol. 1995. Vol 117, pp. 33-40
[45] Barkey, M.E., Socie, D.F. and Hsia, K.J., “A yield surface approach to the estimation of notch strains for proportional and nonproportional cyclic loading,” J. Engng Mater. Technol. 1994, Vol. 116, pp. 173-180
[46] Sorem, J.R., Jr and Tipton, S.M., The use Finite element codes for cyclic stress-strain analysis, “Fatigue Design,” European Structural Intrgrity Society, Vol. 16, Mechanical Engineering Publications, London, 1993, pp. 187-200
[47] Hanschmann, D., Maldefeld, E. and Nowack, H., “Neuber-based life prediction procedure for multiaxially loaded components,” Automation in Fatigue and Fracture: Testing and Analysis, ASTM STP 1231, American Society for Testing and Materials, Philadelphia, 1994, pp. 388-404
[48] Peterson, R.E., “Stress Concentration Factors,” John Wiley and Sons, New York, 1974
[49] Besseling, J.F., “A theory of elastic, plastic and creep deformations of an initially isotropic material showing anisotropic strain-hardening creep recovery and secondary creep,” Journal of Applied Mechanics, 1958, pp. 529-536
[50] ANSYS. Introduction to ANSYS for Release 6.0, 2002
[51] Vladimir, V. and Ogarevic, J.A., “An implement of low-cycle multiaxial fatigue methods,” European Conference on Computational Mechanics 2001, pp. 26-29
[52] ANSYS Menu, “Structural Analysis User’s Guide”, Reversion 6.0, 2002
[53] Yip, M.C. and Jen Y.M., “Mean strain effect on crack initiation lives for notched specimens under biaxial nonproportional loading paths,” ASME, Vol. 119, January 1997. pp. 104-112
[54] Coffin, L.F.Jr., “A Study of the Effects of Cyclic Thermal Stresses on a Ductile Metal,” Trans. ASME, Vol. 76, 1954, pp. 931-950
[55] Manson, S.S., “Behavior of Materials under Conditions of Thermal Stress,” Heat Transfer Symposium, University of Michigan Engineering Research Institute, 1953, pp. 9-75
[56] Basquin, O.H., “The Exponential Law of Endurance Tests,” Am. Soc. Test. Mater. Proc., Vol. 10. 1910, pp. 625-630

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
1. 具橫向穿孔金屬圓柱承受異相多軸向負荷下之低週次疲勞壽命實驗與分析
2. 不同分析條件對電子構裝體在熱衝擊測試下錫球疲勞壽命預測之影響
3. AISI304不銹鋼預置低溫環境後之疲勞壽命實驗與分析
4. 添加碳奈米管及石墨烯微片於基材中對碳纖維/環氧樹脂複合材料拉伸疲勞性質之影響
5. 同時添加碳奈米管及石墨烯微片對環氧樹脂複合材料在不同溫度下疲勞強度的協同效應
6. 不同溫度下碳奈米管/石墨烯微片/環氧樹脂/複合材料靜態拉伸性質之實驗與分析
7. 同時添加碳奈米管及石墨烯微片對環氧樹脂複合材料疲勞裂縫成長行為之影響
8. 同時添加碳奈米管及石墨烯微片對環氧樹脂複合材料靜態及疲勞強度之影響
9. 溫濕度效應對發泡鋁/玻璃纖維強化聚丙烯積層板三明治結構彎矩疲勞強度之影響
10. 玻璃纖維/聚丙烯複合材料/發泡鋁夾層結構靜態與疲勞彎矩強度之實驗與分析
11. 以有限元素法分析混合負載模式彎矩下玻璃纖維/聚丙烯/發泡鋁夾層樑之界面裂縫行為
12. 利用混合負載模式彎矩法分析玻璃纖維/聚丙烯/發泡鋁夾層樑之界面裂縫行為
13. 以發泡鋁/玻璃纖維強化聚丙烯積層板製作三明治結構二階段累積彎矩疲勞強度之實驗與分析
14. 封閉式發泡鋁拉伸、壓縮及剪切性質之實驗與分析
15. 預置水中效應對鋁合金蜂巢夾層結構靜態及疲勞強度影響之研究