跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.89) 您好!臺灣時間:2024/12/04 20:08
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:程錦宜
研究生(外文):Chen Chin Yi
論文名稱:丹皮酚對缺血-再灌流損傷大鼠腦梗塞之效用及其機轉之研究
論文名稱(外文):Effect and Mechanism of Paeonol on Cerebral Infarct inIschemia-Reperfusion Injured Rats
指導教授:謝慶良謝慶良引用關係
指導教授(外文):Hsieh CL
學位類別:碩士
校院名稱:中國醫藥學院
系所名稱:中國醫學研究所
學門:醫藥衛生學門
學類:醫學學類
論文種類:學術論文
論文出版年:2003
畢業學年度:91
語文別:中文
論文頁數:55
中文關鍵詞:丹皮酚缺血─再灌流腦梗塞神經缺損超氧陰離子ED1染色陽性細胞
外文關鍵詞:PaeonolIschemia-reperfusionCerebral infarctNeurological deficitSuperoxide anionED1 staining cell
相關次數:
  • 被引用被引用:2
  • 點閱點閱:262
  • 評分評分:
  • 下載下載:39
  • 收藏至我的研究室書目清單書目收藏:1
丹皮酚對缺血─再灌流損傷大鼠腦梗塞效用及其機轉之研究
研究生 :程錦宜
單位 :中國醫學研究所
指導教授 :謝慶良博士
中文摘要
根據傳統中醫典籍記載,牡丹皮具有涼血的作用,而它的主要成份丹皮酚被認為具有解熱、阻斷鈣離子通道和清除自由基的作用,因此本研究的目的是為了探討丹皮酚對腦梗塞的效用及其機轉。總共60隻雄性Spragrue-Dawley(SD)大鼠被研究,將大鼠的兩側總頸動脈和右側中大腦動脈的腦血流阻斷90分鐘,然後24小時的再灌流,建立一個缺血─再灌流腦損傷大鼠的腦梗塞動物模型。丹皮酚10 mg/kg,15 mg/kg和20 mg/kg分別於腦血流阻斷前20分鐘,以及丹皮酚20 mg/kg於腦血流阻斷後30分鐘從尾靜脈注射,以腦梗塞面積的比值和大鼠的神經缺損分級來評估丹皮酚對腦梗塞的效用。在整個實驗過程,大鼠的直腸溫度、平均動脈壓和心跳速率也被測量。另外,我們分別測量腦血流阻斷前、阻斷後90分鐘,以及再灌流後2小時和24小時時股動脈的lucigenin-chemiluminesence(CL)counts,以及再灌流24小時時腦梗塞區域的ED1染色陽性細胞,來探討丹皮酚對腦梗塞的作用機轉。結果顯示丹皮酚 15 mg/kg、20 mg/kg於腦血流阻斷前治療,和20 mg/kg腦血流阻斷後治療都能減少缺血─再灌流損傷大鼠的腦梗塞面積和神經缺損,以及這些大鼠於再灌流24小時時的直腸溫度較低。另外,丹皮酚20 mg/kg腦血流阻斷前治療能減少再灌流2小時時的lucigenin-CL counts,和再灌流後24小時後腦梗塞區域的ED1的陽性染色細胞,但對血糖則沒有影響。
結論是丹皮酚15 mg/kg和20 mg/kg從尾靜脈注射能減少這種腦梗塞和改善神經缺損。又丹皮酚能減少缺血─再灌流2小時Lucigenin-CL counts,和再灌流24小時時梗塞區的ED1染色陽性細胞,但對血糖沒有作用。另外,丹皮酚15 mg/kg、20 mg/kg再灌流24小時時有較低的體溫。因此我們推測丹皮酚能用來治療人類腦梗塞的急性期,而丹皮酚的這種作用至少部分是來自於它對氧化自由基產生的抑制或清除,以及抑制microglial cell的活化,而與血糖無關。至於丹皮酚組有較低的體溫可能來自抑制組織損傷的發炎反應有關。
Abstract
According to Traditional Chinese Medicine Writings, Moutan cortex can cool the blood. Paeonol is a component of Moutan cortex, is considered that has the action of antipyretic, blocking calcium ion channel and scavenging free radical. Therefore, the aim of the present study is to investigate effect and mechanisms of paeonol on cerebral infarct. A total 60 male Sprague-Dawley (SD) rats were studied, a model of ischemia-reperfusion injured cerebral infarct was established by occluding common carotid arteries and the right middle cerebral artery for 90 min, then reperfusion for 24 hrs. Paeonol 10 mg/kg, 15 mg/kg and 20 mg/kg were administered, respectively, from tail vein of the rat 20 min prior to the cerebral blood flow, and 20 mg/kg was administered 30 min after the cerebral blood flow was occluded. The cerebral infarct area ratio and neurological deficit score were used as an index to evaluate the effect of paeonol on cerebral infarct. Throughout the experimental procedure, the rectal temperature, mean arterial blood pressure and heart rate of the rat also were measured. In addition, we studied the effective mechanisms of paeonol, the lucigenin-Chemiluminesence (CL) counts were measured before, and 90 min after occluding the cerebral blood flow of bilateral common carotid arteries and right middle cerebral artery, and 2 hrs and 24 hrs after reperfusion, respectively. The ED1 staining in the cerebral infarct area and blood sugar levels also were measured after reperfusion 24 hrs. The results indicated that paeonol 15 mg/kg, 20 mg/kg pretreatment and 20 mg/kg posttreatment all decreased the cerebral infarct area ratio and neurological deficit score, and the rectal temperature was lower in the paeonol 15 mg/kg, 20 mg/kg pretreatment and 20 mg/kg posttreatment than these with paeonol 10 mg/kg pretreatment, or without paeonol treatment. In addition, paeonol 20 mg/kg pretreatment can decreased the lucigenin-CL counts during reperfusion 2hs, and also can decreased ED1 positive staining cells in the cerebral infarct area, but paeonol cannot change blood sugar levels.
In conclusion, paeonol 15 mg/kg, 20 mg/kg can decrease cerebral infarct area ratio and neurological deficit score in ischemia-reperfusion injured cerebral infarct rat. Paeonol can decreased lucigenin-CL counts at reperfusion 2hrs, and ED1 staining positive cell at reperfusion 24hrs, but cannot change blood sugar levels. In addition, the rectal temperature is lower in the paeonol 15 mg/kg, 20 mg/kg treated groups. Therefore, we suggest that paeonol can be used to treat acute cerebral infarct in humans, and its action, at least in part, result from the suppressive or scavenging effect of superoxide free radical generation, and inhibit activator of microglia cells, but not results from blood sugar. There are lower rectal temperature in the rats with paeonol 15 mg/kg, 20 mg/kg treatment, suggesting paeonol can inhibit inflammatory reaction of tissue damage.
目錄
第一章 前言
1
1-1.前言
1
1-2.腦梗塞動物模型探討
1
1-3.腦梗塞與自由基及發炎細胞的探討
1
1-4.活血化瘀藥對於缺血-再灌流損傷腦梗塞之研究
2
1-5.本研究的目的
2
第二章 文獻探討
4
2-1.傳統中醫有關中風的描述
4
2-2.中醫典籍有關牡丹皮的記載
5
2-3.丹皮酚的現代研究
5
2-4.缺血後自發性高溫
6
2-5.膠質細胞活化與增殖
6
2-6.白血球之黏附與聚集
8
2-7.自由基產生
10
2-8.延遲性神經損傷
10
2-9.自由基、缺血後炎症反應與腦梗塞關係探討
12
2-10.丹皮酚和中風的關係
13
第三章 材料與方法
14
3-1.動物
14
3-2.缺血─再灌流損傷大鼠腦梗塞模型之建立
14
3-3.藥物的製備、給藥劑量及方式
15
3-4.實驗分組
15
3-5.神經學狀態評估
16
3-6.腦切片梗塞面積染色分析
16
3-7.全血分析及血清生化檢查
17
3-8.缺血─再灌流損傷大鼠腦梗塞模型之建立
18
3-9.實驗分組
18
3-10.超氧陰離子的測定
18
3-11.免疫組織化學染色分析
19
3-12.血清生化檢查
21
3-13.統計分析
21
第四章 結果
22
4-1.缺血─再灌流損傷大鼠腦梗塞之動物模型
22
4-2.丹皮酚對.缺血─再灌流損傷大鼠腦梗塞之效用
22
4-3.丹皮酚對.缺血─再灌流損傷大鼠神經學狀態之效用
22
4-4.丹皮酚對.缺血─再灌流損傷大鼠直腸溫度的效用
23
4-5.丹皮酚對.缺血─再灌流損傷大鼠平均動脈壓和心跳速率的效用
23
4-6.丹皮酚對.缺血─再灌流損傷大鼠體重的效用
23
4-7.丹皮酚對.缺血─再灌流損傷大鼠週邊血球的效用
24
4-8.丹皮酚對.缺血─再灌流損傷大鼠肝、腎功能的效用
24
4-9.丹皮酚對缺血─再灌流損傷大鼠
24
4-10.丹皮酚對缺血─再灌流損傷大鼠血糖的效應
25
4-11.丹皮酚對缺血─再灌流損傷大鼠ED1染色陽性細胞的效應
25
第五章 討論(Discussion)
40
5-1.缺血─再灌流損傷大鼠腦梗塞之動物模型
40
5-2.丹皮酚能減小缺血性-再灌流損傷大鼠的腦梗塞面積
40
5-3.丹皮酚能改善缺血性-再灌流損傷大鼠的神經狀態
40
5-4.丹皮酚不會改變缺血性-再灌流損傷大鼠的平均動脈壓
40
5-5.丹皮酚對缺血性-再灌流損傷大鼠的體重沒有影響
41
5-6.丹皮酚對缺血性-再灌流損傷大鼠的肝功能
SGOT、SGPT和腎功能BUN、Creatinine沒有影響
41
5-7.丹皮酚對缺血性-再灌流損傷大鼠周邊血球沒有影響
41
5-8.丹皮酚減低缺血性-再灌流損傷大鼠的直腸溫度,可能來自它的抗發炎反應
41
5-9.丹皮酚對缺血性-再灌流損傷大鼠有抑制氧化自由基的產生或清除的作用
42
5-10.丹皮酚對缺血性-再灌流損傷大鼠的血糖沒有影響
43
5-11.丹皮酚能減少缺血性-再灌流損傷大鼠ED1染色陽性細胞的作用
43
第六章 結論 (Conclusion)
45
參考文獻
46
英文摘要
55
圖目錄
Figure 1 腦冠切片圖(Brain coronal sections)
26
Figure 2 梗塞面積(Infarct areas)
27
Figure 3 神經學缺陷評估(Neuro-deficit score assessment)
31
Figure 4 體重喪失評估(Weight loss assessment)
32
Figure 5 超氧陰離子之測量(Superoxide anion measurement)
35
Figure 6 血糖濃度之測量(Blood sugar measurement)
36
Figure 7 ED1 immunostaining-positive cells measurement
37
Figure 8 ED1之計算面積位置標示圖
38
Figure 9 ED1之免疫組織化學分析(Immunohistochemistry assay)
39
表目錄
Table 1.直腸溫度變化表(The change of rectal temperature)
28
Table 2.平均動脈壓變化表(The change of mean blood pressure)
29
Table 3.心跳速率變化表(The change of heart rate)
30
Table 4.周邊血球指標變化表
(Peripheral blood cells and differential values)
33
Table 5.肝腎功能測量表(The liver and renal functions)
34
參考文獻
1.謝博生:臨床內科學,金名出版社 1990;pp.234.
2.葉曙:內科學,台灣書局 1978;3:858-876
3.葉炳強 謝松蒼 呂建榮 戴春暉:台大神經科診療手冊,台大醫院神經部出版 2000;pp.153-156
4.廖恩賜:延胡索對於缺血性-再灌流大鼠腦梗塞效用之研究。中國醫藥學院中國醫學研究所碩士論文 2001;234:1-28
5.Ginsberg MD, Busto R. Rodent models of cerebral ischemia. Stroke. 1989; 20:1627-1642.
6.Laing RT, Jakubowski J, Laing RW. Middle cerebral artery occlusion without cranietomy in rats which method works best. Stroke. 1993;24:294-297.
7.Longa ET, Weinstein PR, Carlson S, Cummins R. :Reversible middle cerebral artery occlusion without cranietomy in rats. Stroke. 1989;20:84-91.
8.Ito WD, Schaarschmidt S, Klask R. :Infarct size measurement by triphenyltetrazolium chloride staining versus in vivo injection of propidium iodide. J mol cell Cardiol. 1997;29:2169-2175.
9.Yang Y, Shuaib A, Li Q. :Quantification of infarct size on focal cerebral ischemia model of rats using a simple and economical method. J. Neurosci Meth. 1998;84:9-16.
10. Buttini M, Appel K, Sauter A, Gebicke-Haerter R.-J, Boddeke H-W GM. :Expression of tumor necrosis factor alpha after focal cerebral ischemia in the rat. Neuroscience. 1996; 71:1-16.
11. Zhang Z, Chopp M, Goussev A, Powers C. :Cerebral vessels express interleukin 1 ß alter focal cerebral ischemia. Brain Res. 1998;784:210-217.
12. Wang X, Li X, Currie RW, Willette RN, Barone FC, Feuerstein GZ. :Application of real-time polymerase chain reaction to quantitate induced expression of interleukin-1 ß mRNA in ischemic brain tolerance. J Neurosci Res. 2000;59:238-246.
13. Korematsu K, Goto S, Nagahiro S, Ushio Y. :Microglial response to tramsient focal cerebral ischemia. :An immunocytochemical study on the rat cerebral cortex using anti-phosphotyrosine antibody. J Cereb Blood Flow Metab. 1994;14:825-830.
14. Ito D, Tanaka K, Suzuki S, Dembo T, Fukuachi Y. :Enhanced expression of Iba1,ionized calcium-binding adapter molecule 1,after transient focal cerebral ischemia in rat brain. Stroke. 2001;32:1208-1215.
15. Lyons SA, Pastor A, Ohlemeyer C, Kann O, Wiegand F, Press K, Knapp F, Kettenmann H, Dirnagl U. :Distinct physiologic properties of microglia and blood-borne cells in rat brain slices after permanent middle cerebral artery occlusion . J Cereb Blood Flow Metab. 2000;20:1537-1549.
16.Beech. J, Reckless. J, Mosedale DE, Grainger DJ, Williams S- CR. :Neuroprotection in ischemia-reperfusion injury: an anti-inflammatory approach using a novel broad-spectrum chemokines inhibitor. J Cereb Blood Flow Metab. 2001;21:683-689.
17. Yenari MA, Sun GH, Onley D, Watson L, Turner S, Whitaker S, Steinberg G. :Hu23F2G, an antibody recognizing the leukocyte CD11/CD18 integrin, reduces injury in a rabbit model of transient focal cerebral ischemia. Exp Neurol. 1998; 153:223-233.
18. Soviano SG., Coxor A, Wang YF, Frosch MP, Lipton SA, Hickey PR, Mayadas TN. :Mice deficient in Mac-1(CD11b/CD18) are less susceptible to cerebral ischemia/reperfusion injury. Stroke . 1999;30;134-139.
19. Bidmon HJ, Wu J, Buchkremen-Ratymann I, Mayer B, Witte OW, Zilles K. :Transient Changes in the presence of nitric oxide synthases and nitrotyrosine immunoreactivity after focal cortical lesions. Neuroscience. 1998;82:377-395.
20.Dora R, Aniko SV, Jerome L, Mader D, Sandor V, Akira A. :Postischemia spontaneous hyperthermia and its effects in middle cerebral artery occlusion in the rat. Exp Neurol. 2000;163:399-407.
21. Zhao Q, Memezawa H, Smith ML, Siesjo B. :Hyperthermia complicates middle cerebral artery occlusion induced by an intraluminal filament. Brain Res. 1994; 649:253-259.
22. He Z, Yamawaki T, Yang S, Day AL, Simpkins JW, Naritomi H. :Experimental model of small deep infarcts involving the hypothalamus in rats. Change in body temperature and postural reflex. Stroke. 1999;30:2743-2751.
23. Abraham H, Somogyvari-Vigh A, Maderdrut JL, Vigh S, Arimura A. :Filament size influences temperature changes and brain damage following middle cerebral artery occlusion in rats. Exp Brain Res. 2002;142:131-138.
24. Kim Y, Busto R, Dietrich WD, Kraydieh S, Ginsberg MD. :Delay postischemic hyperthermia in awake rats worsens the histopathological outcome of transient focal cerebral ischemia. Stroke. 1996;27:2274-2281.
25.Lao CJ, Lin JG, Kuo JS, Chiang SY, Chen SC, Liao ET, Hsieh CL, Effect of Salvia Miltiorrhiza Bunge on cerebral infarct in ischemia-reperfusion injured rats. Amer. J. Chin. Med. 2003; 31:1-10.
26.李群愛:牡丹皮的藥理研究。中草藥 1998; 19(6):36.
27.Tomoko O, Fumiko N, Takako S, Kanako S, Keiko U, Itsu K. :The inhibition of phenylhydro quinone-induced oxidative DNA cleavage by constituents of Moutan Cortex and Paeoniae Radix. Biol. Pharm. Bull. 2000;23:199-203.
28.Yoshikawa M, Uchida E, Kawaguchi A, Kitagawa I. :Galloyloxypaeoniflonin Suffruticosides A.B.C. and paeonol glycoside from Chinese moutan cortes. Chem. Pharm. Bull. 1992;40:2240-2248.
29.劉俊昌 陳文秀:中醫內科臨床實用手冊,中國附設醫院中醫內科,台中 1994;pp.147-149.
30.Tang JR, Shi L. :The inhibitory effects of sodium paeonol Sulfate on calcium influx in the cultured neonatal rat heart cells. Acta Pharmaccutica Sinica. 1991;26:161-165.
31.Shi L, Fan PS, Fang JX, Han ZX. :Acta Pharmacol. Sin. 1998;9:555-558.
32.Ohto T, Mihashi S, Saheki Y, Wakabayashik. :Yakugaku Zasshi. 1961; 14:100-101.
33. Li F, Omae T, Fisher M. :Spontaneous hyperthermia and its mechanism in the intraluminal suture middle cerebral artery occlusion model of rats. Stroke. 1999; 30:2464-2471.
34. Sairanen TR, Lindsberg PJ, Brenner M, Siren AL. :Global forebrain ischemia results in differential cellular expression of interleukin-1 ß (IL-1 ß)and its receptor at mRNA and protein level. J Cereb Blood Flow Metab. 1997;17:1107-1120.
35. Uno H, Matsuyama T, Akita H, Nishimura H, Sugita M. :Induction of tumor necrosis factor —alpha in the mouse hippocampus following transient forebrain ischemia. J Cereb Blood Flow Metab. 1997;17:491-499.
36. Liu J, Bartels M, Lu A, Sharp FR. :Microglia/macrophages proliferate in striatum and neocortex but not in hippocampus after brief global ischemia that produces ischemic tolerance in gerbil brain. J Cereb Blood Flow Metab. 2001;21:361-373.
37. Stevens SL, Bao J, Hollis J, Lessov NS, Clark WM., Stenzel-Poore MP. :The use of flow cytometry to evaluate temporal changes in inflammatory cells following focal cerebral ischemia in mice. Brain Res. 2002; 932:110-119.
38. Rabuffetti M, Sciorat C, Tarozzo G, Clementi E, Manfredi AA, Beltramo M. :Inhibition of caspase-1-like activity by Ae-Val-Ala-Asp-Choromethyl Ketone, induces long-lasting neuroprotection in cerebral ischemia through apoptosis reduction and decrease of proinflammatory cytokines. J Neurosci. 2000;20:4398-4404.
39. Kato H, Kogure K, Liu XH, Araki T, Kato K, Itoyama Y. :Immunohistochemical localization of the low molecular weight stress protein HSP27 following focal cerebral ischemia in the rat. Brain Res. 1995;679:1-7.
40. Takami S , Minami M, Katayama T, Nagata I, Namura S, Satoh M. :TAK-779, a nonpeptide C C chemokine receptor antagonist, protects the brain against focal cerebral ischemia in mice . J Cereb Blood Flow Metab. 2002;22:780-784.
41. Phillips JB, Williams AJ, Adams J. :Proteasome inhibitor PS519 reduces in infarction and attenuates leukocyte infiltration in a rat model of focal cerebral ischemia. Stroke. 2000; 31:1686-1693.
42. Stroemer RP, Rothwel NJ. :Cortical protection by localized striatal injection of IL-1ra following cerebral ischemia in the rat. J Cereb Blood Flow Metab 1997;17:597-604.
43. Zhang ZG, Chopp M. :Inflammatory response and adhesion molecules in focal cerebral ischemia. Monogr Clin Neurosci Basel Karger. 1998;16:46-64.
44. Yanaka K, Camarata PJ, Spellman SR, Skubitz A-P N, Furcht LT, Low WC. :Laminin peptide ameliorates brain injury by inhibiting leukocyte accumulation in a rat model of transient focal cerebral ischemia. J Cereb Blood Flow Metab. 1997;17:605-611.
45. Chopp M, Zhang RL , Chen H, Li Y, Jiang N, Rusche JR. : Postischemia administration of an anti-mac-1 antibody reduces ischemic cell damage after transient middle cerebral artery occlusion in rats. Stroke. 1994;25:869-876.
46. Savitz SI, Erhardt JA, Anthony JV, Gupta G, Li X, Barone FC, Rosenbaum DM. :The novel β-blocker, carvedilol, provides neurnoprotection in transient focal stroke. Stroke. 2000;20:1197-1204.
47. Zhang R, Chopp M, Zhang Z, Jiang N, Powers C. :The expression of P and E-selectins in three models of middle cerebral artery occlusion. Brain Res. 1998;785:207-214.
48. Uhl E, Beck J, Stummer W, Lehmberg J, Baethmann A. :Leukocyte-endothelium interactions in pial venules during the early and late reperfusion period after global cerebral ischemia in gerbils. J Cereb Blood Flow Metab. 2000; 20:979-987.
49. Becker K, Kindrick D , Relton J, Harlan J, Winn R. :Antibody to the α4 integrin decreases infarct size in transient focal cerebral ischemia in rats. Stroke. 2001;32:206-211.
50. Garcia JH, Liu KF, Bree MP. :Effects of CD11b/CD18 monoclonal antibody on rats with permanent middle cerebral artery occlusion. Am J Pathol. 1996;148-248.
51. Schroeter M, Jander S, Jander OW, Stoll G. :Heterogenity of the microglial response in photochemically induced focal ischemia of the rat cerebral cortex. Neuroscience. 1999; 4:1367-1377.
52. Jander S, Schroeter M, Stoll G. :Interleukin-18 expression after focal ischemia of the rat brain: Association with the late-stage inflammatory response. J Cereb Blood Flow Metab. 2002;22:62-70.
53. Endoh M , Maisese K, Wagner J. :Expression of the inducible form of nitric oxide synthase by reactive astrocytes after transient global ischemia. Brain Res. 1994;651:92-100.
54. Batteur-Parmentier S, Margaill I, Plotkine M. :Modulation by nitric oxide of cerebral neutrophil accumulation after transient focal ischemia in rats. J Cereb Blood Flow Metab. 2000;20:812-819.
55. Huang CY, Fujimura M, Chang YY, Chan PH. :Overexpression of copper-zinc superoxide dismutase attenuates acute activation of activator protein-l after transient focal cerebral ischemia in mice. Stroke. 2001; 32:741-747.
56. Wiessner C, Brink I, Lorenz P, Neumann-Haefelin T, Vogel P , Yamashita K. :Cyclin D1 Messenger and is induced in microglia rather than neurons following transient forebrain ischemia. Neurosciene. 1996;4:947-958.
57. Lin B, Ginsberg MD., Busto R, Dietrich WD. :Sequential analysis of subacute and chronic neuronal astrocytic and microglia alterations after transient global ischemia in rats. Acta Neuropathol. 1998; 95:511-523.
58. Morioka T, Kalehua AN, Streit WJ. :The microglial reaction in the rat dorsal hippocampus following transient forebrain ischemia. J Cereb Blood Flow Metab. 1991; 11:966-973.
59. Stephenson DT, Schober DA, Smalstig EB, Mincy RE, Gehlert DR, Clemens JA. :Peripheral benzodiazepine receptors are colocalized with activated microglia following transient global forebrain ischemia in the rat. J Neurosci. 1995; 15:5263-5274.
60. Gottlieb M, Matute C. :Expression of nerve growth factor in astrocytes of the hippocampal CA1 area following transient forebrain ischemia. Neuroscience. 1999;3:1027-1034.
61. Nakajima Y, Fujimiya M, Maeda T, Mori A. :Morphological investigation of the neuroprotective effects of graded hypothermia after diverse periods of global cerebral ischemia in gerbils. Brain Res. 1997;765:113-121.
62. Velier JJ, Ellison JA, Kikly KK , Spera PA, Barone FC, Feuerstein GZ. :Caspase-8 and Caspase-3 are expressed by different populations of cortical neurons undergoing delayed cell death after focal stroke in the rat. J Neurosci. 1999;19:5932-5941.
63. Kopanen S, Goldsteins G, Kelnanen R, Koistinaho J. :Induction of protein kinase Cδ subspecies in neurons and microglia after transient global brain ischemia. J Cereb Blood Flow Metab. 2000;20:93-102.
64. Nitaton T, Sato N, Waguri S, karasawa Y, Araki H, Shibanai K, Kominami E, Uchiyama Y. :Delayed neuronal death in the CA1 pyramidal cell layer of the gerbil hippocampus following transient ischemia is apoptosis . J Neurosci. 1995;15:1001-1011.
65. Ishimara H, Ishikawa K, Ohe Y, Takahashi A, Tatemoto K, Maruyama Y. :Activation of iron handling system within the gerbil hippocampus after cerebral ischemia. Brain Res. 1996;726:23-30.
66. Kondo Y, Ogawa N, Asanuma M, Ota Z, Mori A. :Regional differences in late-onset iron deposition ,ferritin, transferring, astrocyte proliferation, and microglia activation after transient forebrain ischemia in rat brain. J Cereb Blood Flow Metab. 1995;15:216-226.
67. Gottlieb M, Matute C. :Expression of ionotropic glutamate receptor subunits in glial cells of the hippocampal CA1 area following transient forebrain ischemia. J Cereb Blood Flow Metab. 1997;17:290-300.
68. Banati RB, Gehrmann J, Wiebner C, Hossmann KA, Kreutzberg GW. :Glial expression of the β-amyloid precuror protein (APP) in global ischemia. J Cereb Blood Flow Metab. 1995; 15:647-654.
69. Han HS, Qiao Y, Karabiyikoglu M, Giffard RG , Yenari MA. :Influence of mild hypothermia on inducible nitric oxide synthase expression and reactive nitrogen production in experimental stroke and inflammation. J Neurosci. 2002;22:3921-3928.
70. Cho S, Volpe BT, Bae Y, Hwang O, Choi HJ , Gal J, Park-Larry C H, Chu CK, Du J, Joh TH. :Blockade of tetrahydrobiopterin synthesis protects neurons after transient forebrain ischemia in rat: a novel role for the cofactor. J Neurosci. 1999; 19:878-889.
71.Nakashima MN, Yamashita K, Kataoka Y, Yamashita YS, Niwa M. :Time course of nitric oxide synthase activity in neuronal, glial, and endothelial cells of rat striatum following focal cerebral ischemia. Cell mol neurobiol. 1995; 15:341-349.
72. Bederson JB, Pitts LH, Tsuji M, Nishimura MC, Davis RL, Bartkowski H. :Rat middle cerebral artery occlusion: evaluation of the model and development of a neurologic examination. Stroke. 1986;17:472-476.
73.張晉賢:天麻活性成分香莢蘭醇對FeCl3誘發大白鼠癲癇發作效用之研究。中國醫藥學院中國醫學研究所碩士論文 1999;203:1-38.
74.Sum JS, Hang YS, Huang IH, Lu FJ. :A simple chemiluminesence assay for detecting oxidative stress in ischemic limb injury. Free Rad Biol & Med. 1996;20:107-112.
75.Chen MF, Mo LR, Lin RC, Kuo JY, Charg KK, Lio C, Lu FJ. :Increase of resting levels of superoxide anion in the whole blood of patients with decompensated liver cirrhosis. Free Rad Biol & Med. 1997;23:672-679.
76. Takagi K, Ginsberg MD, Globus-Mordecai YT, Martinez E, Busto R. : Effect of hyperthermia on glutamate release in ischemia penumbra after middle cererbral artery occlusion in rats. Am. J. Physiol. 1994; 266:H1770-H1776.
77.Hsieh CL, Liao ET, Chang SY, Lao CJ, Tang NY, Hsieh CT, Lin JG. Effect of Rhizoma Corydlis on cerebral infarct in ischemia-reperfusion injured rats. Acta Pharmacol Sin. 2001; 22:1143-1148.
78.國科會:囓齒類基本生物學(實驗用大鼠) 2002; pp.1-4.
79. Sick TJ, Tang R, Perez-Pinzon MA. :Cerebral blood flow does not mediate the effect of brain temperature on recovery of extracellular potassium ion activity after transient focal ischemia in the rat. Brain Res. 1999; 821:400-406.
80. Ishikawa M, Sekizuka E, Sato S, Yamaguchi N, Inamasu J, Bertalantty H, Kawase T. :Effects of moderate hypothermia on leukocyte-endothelium interaction in the rat pial microvasculature after transient middle cerebral artery occlusion. Stroke. 1999; 30:1679-1686.
81.Sun JS, Hang YS, Huang IH, Lu FJ. A simple chemiluminesence assay for detecting oxidative stress in ischemic limb injury. Free Rad Biol & Med. 1999; 20:107-112.
82.Chen MF, Mo LR, Lin RC, Kuo JY, Chang KK, Liao C, Lu FJ. :Increase of resting levels of superoxide anion in the whole blood of patient with decompensated liver cirrhosis. Free Rad Biol & Med. 1997; 23:672-679.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top