跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.170) 您好!臺灣時間:2024/12/07 19:27
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:張舒盈
論文名稱:十二種克雷伯氏肺炎桿菌之噬菌體的分離與特性
論文名稱(外文):Isolation and Characterization the Twelve Bacteriophages of Klebsiella pneumoniae
指導教授:吳禮字吳禮字引用關係
學位類別:碩士
校院名稱:中國醫藥學院
系所名稱:醫學研究所
學門:醫藥衛生學門
學類:醫學學類
論文種類:學術論文
論文出版年:2003
畢業學年度:91
語文別:中文
中文關鍵詞:噬菌體克雷伯氏肺炎桿菌
外文關鍵詞:BacteriophagesKlebsiella pneumoniae
相關次數:
  • 被引用被引用:1
  • 點閱點閱:369
  • 評分評分:
  • 下載下載:37
  • 收藏至我的研究室書目清單書目收藏:0
我們以本實驗室先前篩選到的具超廣效乙內醯胺酶(extended-spectrum β-lactamases, ESBLs)之克雷伯氏肺炎桿菌 (Klebsiella pneumoniae) 的一些菌株如K6、K55等, 和K. pneumoniae 10693作為噬菌體宿主細胞, 由醫院所收集的液體之上清液分離到12隻暴裂型噬菌體(KPP2,KPP3,KPP4,KPP5,KPP6,KPP7,KPP10,KPP11,KPP30,KPP42,KPP50和KPP95), 並對其特性進行研究。 這些噬菌體的基本性質如titer(約109 PFU /ml)、限制酶 EcoRV 切取圖譜、核酸大小(約170-180 kb)均相似, 部分噬菌體外形結構也相似,推論他們屬同一類噬菌體。於是我們隨機取噬菌體KPP95 作進一步的特性研究。 KPP95 的titer約3 × 1010 PFU/ml, 能快速強烈的造成其宿主細胞K. pneumoniae 10693的裂解, 電顯外形上具有略長之二十面體的頭部, 接著連接含有一圈圈蛋白質外鞘, 其下再接一個基板。 KPP95的核酸大小約170-180 kb, 於G或C鹼基上被修飾並可能被醣化, 具低G+C組成。 這些性質均與T系列噬菌體相似。 有趣的是, 他不但可以感染許多具超廣效乙內醯胺酶的 K. pneumoniae, 也可感染1株抗cefotaxime的Klebsiella oxytoca 和1株具超廣效乙內醯胺酶的Enterobacter agglomerans, 為一泛宿主的噬菌體。 由KPP95核酸的選殖得到的之各核酸片段序列比對的結果, 顯示了 KPP95 與 T-even 或 pseudo-T-even 噬菌體較相似。 在蛋白質電泳分析下, 可看到 KPP95 約有 25個蛋白片段, 包含一個主要的蛋白片段約 46 kDa,此蛋白經N-端定序和基因23的PCR產物序列比對後, 顯示與T-even 或 pseudo-T-even 噬菌體的基因23轉譯出來的主要外套蛋白 (gp23) 相近。 此外, 藉由KPP95與其他 T4-type 噬菌體基因 18、19和23的比對結果, 發現他們的結構基因具有相似的設計形式。 從KPP95與其他17個 T4-type 噬菌體其基因23所建構出的種系發生樹狀圖, 我們推論 KPP95 應屬於 pseudo-T-even 噬菌體,而且與42噬菌體較為接近。

The KPP2, KPP3, KPP4, KPP5, KPP6, KPP7, KPP10, KPP11, KPP30, KPP42, KPP50 and KPP95 are twelve lytic bacteriophages. They were isolated from supernatant of hospital wastewater. These phages could lyse some of ESBLs (extended-spectrum β-lactamases) strains of Klebsiella pneumoniae (e.g. K6 or K55) and K. pneumoniae 10693. Under characteristic studies, they all were found to have similar basic properties such as titer (about 109 PFU/ml), restriction-cutting pattern of EcoRV, genome sizes (about 170-180 kb) and morphology of some these phages. We conclude that they are the same type of phages. KPP95 was randomized chosen for further characteristic studies and high titer of the phage (approximately 3 × 1010 PFU/ml) could be obtained. It could rapidly and violently lyse its host cell, K. pneumoniae 10693. Under electron microscope, it had morphology of a moderate elongated icosahedral head connected to a tail-sheathed tail and was terminated by a base plate. The genome size of KPP95 was estimated to be 170-180 kb. The DNA might have been modified on base G or C and have been glucosylated. The chemical composition of DNA of KPP95 possessed in a low G+C content situation. These properties are similar to T-type phages. Interestingly, KPP95 could also infect many ESBLs strains of K. pneumoniae, one cefotaxime-resisted Klebsiella oxytoca and one ESBLs strain of Enterobacter agglomerans. This suggests that it is a broad host range phage. The comparison of each KPP95 DNA fragments cloned from its genome also showed that KPP95 was much more similar to T-even or pseudo-T-even phages. SDS-polyacrylamide gel electrophoresis of the phage particles showed about 25 proteins. They included one major coat protein of 46 kDa. The N-terminal sequence of the major coat protein of KPP95 and PCR product sequence of its gene 23 were presented similarity to major coat protein (gp23) encoded by gene 23 of T-even or pseudo-T-even phages. Moreover, the alignments of gene 18, 19 and 23 of KPP95 revealed having similar modular or mosaic design with the structural genes of other T4-type phages. By the phylogenetic tree of the sequences of gene 23 of KPP95 and other 17 phages of T4-type, KPP95 should be belong to pseudo-T-even phages and much closer to phage 42.

目錄
中文摘要…………………………………………………………………………………1
英文摘要…………………………………………………………………………………2
前言………………………………………………………………………………………3
一、噬菌體的簡介…………………………………………………………………3
二、“protein antibiotics” 的發現………………………………………………… 6
三、噬菌體療法及其試驗…………………………………………………………7
四、克雷伯氏肺炎桿菌的簡介及其抗藥性………………………………………8
五、研究動機………………………………………………………………………9
材料與方法…………………………………………………………………………….11
I. 實驗材料………………………………………………………………………….11
一、菌種、噬菌體與質體…………………………………………………………11
二、藥品與酵素……………………………………………………………………11
三、培養基…………………………………………………………………………11
四、試劑與緩衝溶液………………………………………………………………12
II. 實驗方法………………………………………………………………………….14
一、細菌培養………………………………………………………………………14
二、菌種甘油保存法………………………………………………………………14
三、噬菌體的篩選…………………………………………………………………14
四、噬菌體濃度之測定……………………………………………………………14
五、噬菌體的純化…………………………………………………………………14
六、噬菌體之增殖…………………………………………………………………15
七、大量噬菌體液的製備…………………………………………………………15
八、K. pneumoniae 10693染色體DNA之抽取…………………………………15
九、噬菌體DNA之抽取…………………………………………………………16
十、照電子顯微鏡之前處理………………………………………………………16
十一、K. pneumoniae 10693生長曲線與細菌烈解曲線之測試…………………17
十二、噬菌體KPP95宿主分布的決定………………………………………… 17
十三、脈衝電泳法Pulsed-field gel electrophoresis(PFGE)………………… 18
十四、洋菜凝膠電泳製備與分析(agarose gel electrophoresis)………………18
十五、限制酶切割(Restriction enzyme digestion)……………………………19
十六、KPP95噬菌體其SDS-PAGE之蛋白分析……………………………… 19
十七、KPP95噬菌體蛋白質之N-端定序之處理……………………………… 20
十八、DNA的連接反應(ligation)…………………………………………… 21
十九、E. coli 之轉形作用(transfomation)……………………………………21
二十、小量質體DNA之抽取……………………………………………………21
二十一、聚合酶連鎖反應(Polymerase chain reaction)及其產物之定序…… 22
結果…………………………………………………………………………………….24
一、噬菌體的篩選…………………………………………………………………24
二、暴裂型噬菌體的基本性質……………………………………………………24
三、噬菌體KPP95之特性研究………………………………………………… 26
四、klebsiella pneumoniae 10693之染色體DNA的限制酶切割……………… 33
五、轉型株pOS 1、pOS 2、pOS 3其質體DNA的限制酶切割………………33
討論……………………………………………………………….……………………34
結論……………………………………………………………….……………………43
圖表……………………………………………………………….……………………45
參考文81
獻………………………………………………………….……………………

參考文獻
Ackermann, H. W. (1998) Tailed bacteriophages: the order Caudovirales. Adv. Virus Res. 51: 135-201.
Ackermann, H. W., and Krisch, H. M. (1997) A catalogue of T4-type bacteriophages. Arch. Virol. 142: 2329-2345.
Balows, A., Hausler W. J., Herrmann, K. L., Shadomy, H. J., and Isenberg H. D. (1991) Manual of Clinical Microbiology. 129-130, 172-175, 360-379.
Berchieri, A. Jr.,. Lovell, M. A., and Barrow, P. A. (1991) The activity in the chicken alimentary tract of bacteriophages lytic for Salmonella typhimurium. Res. Microbiol. 142: 541-549.
Carlton, R. M. (1999) Phage Therapy: Past History and Future Prospects. Archivum Immunologiae et Therapiae Experimentalis. 47: 267-274.
Carpenter, J. L. (1990) Klebsiella pulmonary infections:occurrence at one medical center and review. Rev.Infect.Dis. 12: 672-682.
De la Torre, M. G. and Romero-Vivas, J.. (1985) Klebsiella bacteremia: an analysis of 100 episodes. Rev.Infect.Dis. 7: 143-150.
DeRosier, D. J., and Klug, A. (1972) Structure of the tubular variants of the head of bacteriophage T4 (polyheads). I. Arrangement of subunits in some classes of polyheads. J. Mol. Biol. 65: 469-488.
Dominique, L. M., James, W. B., and Jonathan, R. E. (1997). Evidence of interhospital transmission of extended-spectrum β-lactamase-resistant Klebsiella pneumoniae in the United States, 1986 to 1993. Infect Control Hosp Epidemiol. 18: 429-498.
Haggard-Ljungquist, E., Halling, C., and Calendar, R. (1992) DNA sequence of the tail fiber genes of bacteriophage P2: evidence for horizontal transfer of tail fiber genes among unrelated bacteriophages. J. Bacteriol. 174: 1462-1477.
Hanberger, H., Garcia-Rodriquez, J. A., and Gobernado, M. (1999) Antibiotic susceptibility among aerobic Gram-negative bacilli in intensive care units in 5 European countries. JAMA. 281: 67-71.
Haynes, J. A., and Eiserling, F. A. (1996) Modulation of bacteriophage T4 capsid size. Virology. 221: 67-77.
Hendrix, R. W., Smith, M. C., Burns, R. N., Ford, M. E., and Hatfull, G. (1999) Evolutionary relationships among diverse bacteriophages and prophages: all the world's a phage. Proc. Natl. Acad. Sci. USA. 96: 2192-2197.
Hyunjoo, P., Lyu, S., and Lee, J. (1999). Survey of extended-spectrum β-lactamases in clinical isolates of Escherichia coli and Klebsiella pneumoniae: prevalence of TEM-52 in Korea. J Clin Microbiol. 37: 1758-1763.
Jacoby, G. A. and Han, P. C. (1996). Detection of extended-spectrum β-lactamases in clinical isolates of Klebsiella pneumoniae and E. coli. J Clin Microbiol. 34: 908-911.
Joklik, Willett, Amos, Wilfert. (1992) Zinsser Microbiology. 20 th edition. Appleton and Lange Publishers. ch 60.
Jong, G. M. and Hsiue, T. R. (1995) Rapidly fatal outcome of bacteremic Klebsiella pneumoniae pneumonia in alcoholics. Chest. 107: 214-217.
Kim, J. S., and Davidson, N. (1974) Electron microscope heteroduplex studies of sequence relations of T2, T4 and T6 bacteriophage DNAs. Virology. 57: 93-111.
King, J., and Mykolajewycz, N. (1973) Bacteriophage T4 tail assembly: proteins of the sheath, core and baseplate. J. Mol. Biol. 75: 339-358.
Kocsis, E., Greenstone, H. L., Locke, E. G., Kessel M., and Steven, A. C. (1997) Multiple conformational states of the bacteriophage T4 capsid surface lattice induced when expansion occurs without prior cleavage. Journal of Structural Biology. 118(1): 73-82.
Koneman, E. W., Allen, S. D., Schreckenberger, P. C., and Winn, W. C. (1992) Color Atlas and Textbook of Diagnostic. 138-155.
Krieng, N. R., and Holt, J. G. (1984) Facultatively Anaerobic Gram-negative Rod Bergey’s Manual of Systematic. p461-465.
Levin, B. and Bull, J. J. (1996) Phage therapy revisited: the population biology of a bacterial infection and its treatment with bacteriophage and antibiotics. Am. Naturalist. 147: 881—-98.
Liu, Y. P., Tung, J. C., Ke, S. C., and Chen, S. L. (1998). Molecular epidemiology of extended-spectrum β-lactamase-producing Klebsiella pneumoniae isolates in a district hospital in Taiwan. J Clin Microbiol. 36: 2759-2762.
Livermore, D. M. and Yuan, M. (1996). Antibiotic resistance and production of extended-spectrum β-lactamases amongst Klebsiella spp. from intensive care units in Europe. J Antimicrob Chemother. 38: 409-424.
Loayza, D., Carpousis, A. J., and Krisch, H. M. (1991) Gene 32 transcription and mRNA processing in T4-related bacteriophages. Mol. Microbiol. 5: 715-725.
Lopek, S. S., and Kucharewicz-Krukowska, A. (1987) Immunogenic effect of bacteriophage in patients subjected to phage therapy. Arch. Immunol. Ther. Exp. 35: 553-561.
Lopek, S. S., Kucharewicz-Krukowska, A., Weber-Dabrowska, B. and Dabrowski, M. (1985) Results of bacteriophage treatment of suppurative bacterial infections. IV. evaluation of the results obtained in 370 cases. Arch. Immunol. Ther. Exp. 33: 219-240.
Maloy, S. R., Cronan, J. E., and Freifelder, D. (1994) Microbial Genetics. Second edition. Jones and Bartlett Publishers. ch 5, 15.
Masatomo, M., Yasunori, T., Katsunori, M., Tetsuya, A., Nobuyuki, K., and Hajime, U. (2002) Characterization of a virulent bacteriophage specific for Escherichia coli O157:H7 and analysis of its cellular receptor and two tail fiber genes. FEMS Microbiology Letters. 211: 77-83.
Matsuzaki, S., Inoue, T., Kuroda, M., Kimura, S., and Tanaka, S. (1998) Cloning and sequencing of major capsid protein (mcp) gene of a vibriophage, KVP20, possibly related to T-even coliphages. Gene. 222: 25-30.
Matsuzaki, S., Yasuda, M., Nishikawa, H., Kuroda, M., Ujihara, T., Shuin, T., Shen, Y., Jin, Z., Fujimoto, S., Nasimuzzaman, M. D., Wakiguchi, H., Sugihara, S., Sugiura, T., Koda, S., Muraoka, A., and Imai, S. (2003) Experimental protection of mice against lethal Staphylococcus aureus infection by novel bacteriophage phi MR11. J Infect Dis. 187(4): 613-24.
McPheeters, D. S., Gosch, G., and Gold, L. (1988) Nucleotide sequences of the bacteriophage T2 and T6 gene 32 mRNAs. Nucleic Acids Res. 16: 9341.
Merril, C. R., Biswas, B., Carlton, R., Jensen, N. C., Creed, G. J., Zullo, S., and Adhya, S. (1996) Long-circulating bacteriophage as antibacterial agents. Proc. Natl. Acad. Sci. USA. 93: 3188-2192.
Monod, C., Repoila, F., Kutateladze, M., Tétart, F., and Krisch, H. M. (1997) The genome of the pseudoT-even bacteriophages, a diverse group that resembles the T-even phages. J. Mol. Biol. 267: 237-249.
Moosdeen, F. (1997). The evaluation of resistance to cephalosporins. Clin Infect Dis. 29: 487-493.
Olivier, G., Maruejouls, C., and Abachin, E. (1998). Nosocomial outbreak of Klebsiella pneumoniae producing SHV-5 extended-spectrum β-lactamase, originating from a contaminated ultrasonography coupling gel. J Clin Microbiol. 36: 1357-1360.
Page, R. D. M. (1996) TREEVIEW: an application to display phylogenetic trees on personal computers. Comput. Appl. Biosci. 12: 357-358.
Philipp, M. L., Angelika, M., Thomas, K., Held, E., Marion, S., and Matthias, T. (2003) K-antigen-specific, but not O-antigen-specific natural human serum antibodies promote phagocytosis of Klebsiella pneumoniae. FEMS Immunology and Medical Microbiology. 35: 93-98.
Rice, L. B., Eckstein, E. C., Devente, J., and Shlaes, D. M. (1996). Ceftazidime-resistant Klebsiella pneumoniae isolates recovered at the Clevel and Department of Veterans Affairs Medical Center. Clin Infect Dis. 23: 118-124.
Sandmeier, H. (1994) Acquisition and rearrangement of sequence motifs in the evolution of bacteriophage tail fibers. Mol. Microbiol. 12: 343-350.
Selick, H. E., Stormo, G. D., Dyson, R. L., and Alberts, B. M. (1993) Analysis of five presumptive protein-coding sequences clustered between the primosome genes, 41 and 61, of bacteriophages T4, T2, and T6. J. Virol. 67: 2305-2316.
Shannon, K., Stapleton, P., and Xiang, X. (1998). Extended-spectrum β-lactamase producing nosocomial outbreaks of infection in the United Kingdom. J Clin Microbiol. 36: 3105-3110.
Shehabi, A. A., Mahafzah, A., Baadran, I., Qadar, F. A., and Dajani, N. (2001) High incidence of Klebsiella pneumoniae clinical isolates to extended-spectrum β-lactam drugs in intensive care units. Diagnostic Microbiology and Infectious Disease. 36: 53-56.
Smith, H. W. and Huggins, R. B. (1982) Successful treatment of experimental E. coli infections in mice using phage: its general superiority over antibiotics. J. Gen. Microbiol. 128: 307-318.
Smith, H. W. and Huggins, R. B. (1983) Effectiveness of phages in treating experimental E. coli diarrhoea in calves, piglets and lambs. J. Gen. Microbiol. 129: 2659-2675.
Smith, H. W. and Huggins, R. B. (1987) The control of experimental E. coli diarrhea in calves by means of bacteriophage. J. Gen. Microbiol. 133: 1111-1126.
Soothill, J. S. (1992) Treatment of experimental infections of mice with bacteriophages. Med. Microbiol. 37: 258-261.
Steven, A. C., Bauer, A. C., Bisher, M. E., Robey, F. A., and Black, L. W. (1991) The maturation-dependent conformational change of phage T4 capsid involves the translocation of specific epitopes between the inner and the outer capsid surfaces. Journal of Structural Biology. 106(3): 221-236.
Streisinger, G., Emrich, J., and Stahl, M. M.. (1967) Chromosome structure in phage T4. III. Terminal redundancy and length determination. Proc. Natl. Acad. Sci. USA. 57: 292-295.
Tetart, F., Desplats, C., and Krisch, H. M. (1998) Genome plasticity in the distal tail fiber locus of the T-even bacteriophage: recombination between conserved motifs swaps adhesin specificity. J. Mol. Biol. 282: 543-556.
Tétart, F., Desplats, C., Kutateladze, M., Monod, C., Ackermann, H. W., and Krisch, H. M. (2001) Phylogeny of the Major Head and Tail Genes of the Wide-Ranging T4-Type Bacteriophages. Journal of Bacteriology. 183(1): 358-366.
Tetart, F., Repoila, F., Monod, C. and Krisch, H. M. (1996) Bacteriophage T4 Host Range is Expanded by Duplications of a Small Domain of the Tail Fiber Adhesin. J. Mol. Biol. 258: 726-731.
Theimer, C. A., Wang, Y., Hoffman, D. W., Krisch, H. M., and Giedroc, D. P. (1998) Non-nearest neighbor effects on the thermodynamics of unfolding of a model mRNA pseudoknot. J. Mol. Biol. 279: 545-564.
Thomas, G. B., Wang, I. N., Struck, D. K., and Young, R. (2001) A protein antibiotic in the phage Qβ virion: diversity in lysis targets. Science. 292: 2326-2329.
Thomas, G. B., Wang, I. N., Struck, D. K., and Young, R. (2002) Breafing free: “Protein antibiotics” and phage lysis. Research in microbiology. 153: 493-501
Thompson, J. D., Higgins, D. G., and Gibson, T. J. (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22: 4673-4680.
Vianelli, A., Wang, G. R., Gingery, M., Duda, R. L., Eiserling, F. A., and Goldberg, E. B. (2000) Bacteriophage T4 self-assembly: localization of gp3 and its role in determining tail length. J. Bacteriol. 182: 680-688.
Weber-Dabrowska, B., Dabrowski, M. and Llopek, S. S. (1987) Studies on bacteriophage penetration in patients subjected to phage therapy. Arch. Immunol. Ther. Exp. 35: 563-568.
Wiener, J., Quinn, J. P., and Brandford, P. A. (1999). Multiple antibiotic-resistant Klebsiella and Escherichia coli in nursing homes. JAMA. 281: 517-523.
Wood, W. B., and Conley, M. P. (1979) Attachment of tail fibers in bacteriophage T4 assembly: role of phage whiskers. J. Mol. Biol. 12: 715-729.
Yanagida, M., Suzuki, Y., and Toda, T. (1984) Molecular organization of the head of bacteriophage T-even: underlying design principles. Adv. Biophys. 17: 97-146.
Yeh, L. S., Hsu, T., and Karam, J. D. (1998) Divergence of a DNA replication gene cluster in the T4-related bacteriophage RB69. J. Bacteriol. 180: 2005-2013.
張森泉, 1989. 肺炎克雷白桿菌肺炎,呼吸系統. 84-85.
陳燕春, 2001. 噬菌體應用技術發展趨勢. 工業技術研究院, 產業經濟與資訊服務中心.
詹前朕、楊宏通, 1991. 微生物學. 505-506.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top