(44.192.10.166) 您好!臺灣時間:2021/03/06 20:17
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:龔佩怡
研究生(外文):Pei-Yi Kung
論文名稱:以生物淋溶法溶出受污染河川底泥中各鍵結型態之重金屬
論文名稱(外文):Mobilization of heavy metals from binding fractions of contaminated river sediments by bioleaching
指導教授:余光昌余光昌引用關係
指導教授(外文):Kuang-Chung Yu
學位類別:碩士
校院名稱:嘉南藥理科技大學
系所名稱:環境工程與科學系暨研究所
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2003
畢業學年度:91
語文別:中文
論文頁數:150
中文關鍵詞:底泥硫氧化菌逐步萃取法生物淋溶重金屬
外文關鍵詞:procedurebioleachingsedimentsulfur oxidizing bacteriaheavy metalsequential extraction
相關次數:
  • 被引用被引用:2
  • 點閱點閱:216
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究係以生物淋溶法來探討底泥中重金屬溶出之可能性。藉由二仁溪底泥中所馴養出之
原生硫氧化菌作為生物淋溶所需之微生物,在各種控制條件下(包括基質與接種體的添加、
接種百分比、基質濃度、總固體物濃度、溫度),將底泥中硫化物或額外添加還原態硫化物
氧化,以形成硫酸進而溶出底泥中重金屬。此外,本研究也以逐步萃取法(sequential
extraction procedure, SEP)分析並探討底泥中重金屬各鍵結型態組成(包括可交換態,與
碳酸鹽鍵結態,與錳氧化物鍵結態,與鐵氧化物鍵結態以及與有機物鍵結態),在生物淋溶
前後之變化。
本研究結果顯示,在生物淋溶過程中,底泥溶液pH值逐漸下降,氧化還原電位則逐漸上升
,底泥中硫化物及添加之硫代硫酸鈉逐漸氧化成硫酸鹽,而總可萃取重金屬之溶出效率也
隨之增加。
在基質與接種體的添加的試驗中,發現接種體對底泥溶液pH值降低之影響比硫添加的影響
為高。在不同接種百分比的淋溶試驗中則顯示,高接種百分比能使pH值的下降較快。經生
物淋溶後,總可萃取重金屬的平均溶出效率之次序為鋅、銅、鎳>鉻>鈷>鉛。除了鈷與
鎳以外,鉻、鋅、銅和鉛鍵結型態之分佈在淋溶前後皆較有一致性的分佈變化。
在不同基質濃度的生物淋溶試驗中,發現當基質濃度小於4.80 g S/L時,隨著基質濃度含
量增加時,其底泥溶液最終pH值也隨之下降。當基質濃度大於4.80 g S/L時,硫氧化菌之
生物氧化作用可能受到抑制,因而使得底泥溶液pH值無法下降。總可萃取重金屬之溶出效
率以基質濃度含量為4.80 g S/L時最佳,其中以鋅的溶出效率為最高,鉛之溶出率則最低

總固體物之含量(TS)可表示為底泥的緩衝能力。結果發現,此值明顯影響底泥溶液中pH值
之下降速率。當總固體物含量愈低時,底泥溶液pH值之下降速率愈大。經生物淋溶後,不
同重金屬在不同的總固體物含量下,有不同的鍵結行為。
在不同控制溫度的淋溶試驗中顯示,硫氧化菌氧化活性在37.0 ℃時最為明顯。除了鉛以外
,其他重金屬從各鍵結位置之溶出率在37.0 ℃時最高,25.0 ℃時溶出率稍差,而在55.0
℃時之溶出效率則明顯最差。溫度變化對生物淋溶前後各種重金屬鍵結型態之變化有顯著
性的影響。在55.0 ℃時,六種重金屬各鍵結型態間之重新分佈現象最為明顯。
The aim of this study is to explore the mobility of heavy metals from
contaminated river sediments by using bioleaching process. Indigenous sulfur-
oxidizing bacteria (SOB) enriched from the sediments of Ell-Ren river were
used to oxidize the reduced sulfur originally existed in sediments or added to
sulfuric acid under controlled operational conditions (including percentage of
inoculum, percentage of substrate added, total solid content and temperature),
which resulted in the mobilization of heavy metals from contaminated
sediments. In addition, the changes in metal binding characteristics that
occur during bioleaching will be explored by using sequential extraction
procedure.
Due to the production of sulfuric acid from the oxidation of reduced sulfur,
the accompanying increase of sulfates, decrease of pH and increase of mobility
of total extractable heavy metals were found.
Results show that the effect of inoculum adding on pH decrease was more than
that of sulfur adding. Higher inoculum percentage could speed up the decrease
of pH more during bioleaching. The order of mobilization of total extractable
heavy metals (TEHMS) could be shown as following: Zn, Cu, Ni>Cr >Co>Pb.
Except for Co and Ni, the binding fractions of other heavy metals had a
consistent variation after bioleaching.
It was found that the sediment pH decreased with the increase of substrate
concentration while it was lower than 4.80 gS/L. When the concentration of
substrate was higher than 4.80 gS/L, the sediment pH could not drop down,
which might be due to the inhibition of biochemical reaction. The optimum
dosage of substrate for mobilizing TEHM was found at 4.80 gS/L.
The total sediment solids (TS) represent the buffer capacity of sediment.
Consequently, a lower TS leads to a easier likelihood of overcoming the
sediment buffer, and hence a lower sediment pH. Different heavy metals showed
different binding behavior at the various TS concentrations.
Of three temperatures tested (25.0℃, 37.0℃ and 55.0℃), pH decrease was
greatest at 37.0℃, indicating that, after acclimation, bacterial oxidizing
activity is greatest at this temperature. Except for Pb, the optimal
temperature for solubilization of total extractable heavy metal was 37.0℃.
The temperature of bioleaching had a significant impact on changes in
partitioning of heavy metals. Transfer of heavy metals between binding
fractions was most apparent at 55.0℃ before and after bioleaching.
中文摘要.......................................................I
英文摘要.....................................................III
誌謝...........................................................V
目錄..........................................................VI
表目錄........................................................XI
圖目錄......................................................XIII
第一章 緒論....................................................1
1.1 研究動機...................................................1
1.2 研究目的...................................................2
第二章 文獻回顧................................................5
2.1 底泥的意義.................................................5
2.1.1 底泥的定義...............................................5
2.1.2 底泥的形成...............................................5
2.1.3 底泥的組成...............................................6
2.2 底泥研究的重要性...........................................6
2.2.1 底泥污染的意義...........................................6
2.2.2 受重金屬污染之底泥對水體環境的影響.......................7
2.2.3 底泥品質評估.............................................8
2.2.3.1 底泥品質標準之建立.....................................8
2.2.3.2 底泥品質評估方法.......................................8
2.3 底泥的管理策略.............................................9
2.4 底泥中重金屬的意義........................................10
2.4.1 底泥中重金屬鍵結機制....................................10
2.4.2 金屬在底泥中鍵結型態....................................12
2.4.3 底泥中鍵結型態之來源及其移動性..........................15
2.4.4 金屬鍵結型態在環境上的意義..............................16
2.5 底泥中污染物的去除方法....................................18
2.5.1 底泥中污染物的種類......................................18
2.5.2 受污染之底泥的處理方法..................................18
2.5.2.1 底泥現地處理法........................................18
2.5.2.2 底泥非現地處理法......................................20
2.5.3 底泥中重金屬的去除方法..................................22
2.6 以生物淋溶法去除底泥中重金屬..............................25
2.6.1 生物淋溶之原理..........................................25
2.6.1.1 直接機制(direct mechanism)............................25
2.6.1.2 間接機制(indirect mechanism)..........................26
2.6.2 硫化桿菌屬(Thiobacillus)之生物特性......................27
2.6.3 生物淋溶的影響因素......................................29
2.6.4 生物淋溶之應用..........................................29
2.6.4.1 在採礦冶金之應用......................................32
2.6.4.2 在污泥重金屬的去除處理上之應用........................32
2.6.4.3 在底泥重金屬的去除處理上之應用........................33
第三章 實驗設備、材料與方法...................................37
3.1 研究流程..................................................37
3.2 實驗設備及儀器............................................39
3.3 實驗材料及藥品............................................40
3.4 底泥樣品的採集............................................41
3.5 底泥之物化特性分析........................................41
3.5.1 底泥物化特性分析方法....................................42
3.6 原生硫氧化菌之馴養........................................45
3.6.1 馴養方法及步驟..........................................45
3.7 生物淋溶試驗..............................................46
3.7.1 生物淋溶試驗方法及步驟..................................46
3.7.2 生物淋溶試驗實驗分析項目及方法..........................46
3.7.3 生物淋溶試驗操作條件之探討..............................47
3.7.3.1 基質和接種體的添加對生物淋溶試驗之影響................47
3.7.3.2 不同接種百分比(v/v)對生物淋溶試驗之影響...............48
3.7.3.3 不同基質濃度對生物淋溶試驗之影響......................48
3.7.3.4 不同固體物濃度對生物淋溶試驗之影響....................48
3.7.3.5 不同溫度對生物淋溶試驗之影響..........................49
3.8 底泥中重金屬鍵結型態之分析................................49
3.8.1 逐步萃取法操作條件與流程................................50
第四章 結果與討論.............................................54
4.1 底泥之物化特性分析........................................54
4.1.1 泥樣A之物化特性分析.....................................54
4.1.2 泥樣B之物化特性分析.....................................58
4.2 原生硫氧化菌馴養..........................................62
4.2.1 馴化過程中底泥pH值之變化................................62
4.2.2 底泥的添加對生物淋溶試驗中pH值變化之影響................64
4.2.3 底泥的添加對生物淋溶試驗中氧化還原電位變化之影響........65
4.2.4 底泥的添加對生物淋溶試驗中硫酸鹽變化之影響..............66
4.3 基質和接種體的添加對硫氧化菌淋溶效果之影響................68
4.3.1 基質與接種體的添加對底泥pH值與硫酸鹽含量之影響..........68
4.3.2 基質與接種體的添加對總可萃取重金屬(TEHM)溶出效率之影響..70
4.3.3 基質與接種體的添加對生物淋溶前後重金屬鍵結型態變化之影響72
4.4 接種百分比對硫氧化菌淋溶效果之影響........................80
4.4.1 接種百分比對底泥pH值變化之影響..........................80
4.4.2 接種百分比對底泥氧化還原電位變化之影響..................82
4.4.3 接種百分比對底泥硫酸鹽含量變化之影響....................83
4.4.4 接種百分比對總可萃取重金屬(TEHM)溶出效率之影響..........84
4.4.5 接種百分比對生物淋溶前後重金屬鍵結型態變化之影響........86
4.5 基質濃度對硫氧化菌淋溶效果之影響..........................94
4.5.1 不同基質濃度對底泥pH值變化之影響........................94
4.5.2 不同基質濃度對底泥氧化還原電位變化之影響................96
4.5.3 不同基質濃度對底泥硫酸鹽含量變化之影響..................97
4.5.4 比較本研究與文獻其他研究中基質濃度對生物淋溶法之影響....99
4.5.5 不同基質濃度對總可萃取重金屬(TEHM)溶出效率之影響.......100
4.5.6 不同基質濃度對生物淋溶前後重金屬鍵結型態變化之影響.....101
4.6 總固體物含量對硫氧化菌淋溶效果之影響.....................111
4.6.1 總固體物含量對底泥pH值變化之影響.......................111
4.6.2 總固體物含量對底泥氧化還原電位變化之影響...............112
4.6.3 總固體物含量對底泥硫酸鹽含量變化之影響.................113
4.6.4 比較本研究與文獻其他研究中固體物含量對生物淋溶法之影響.116
4.6.5 總固體物含量對總可萃取重金屬(TEHM)溶出效率之影響.......116
4.6.6 總固體物含量對生物淋溶前後重金屬鍵結型態變化之影響.....118
4.7 溫度對硫氧化菌淋溶效果之影響.............................123
4.7.1 溫度對底泥pH值變化之影響...............................123
4.7.2 溫度對底泥氧化還原電位變化之影響.......................125
4.7.3 溫度對底泥硫酸鹽含量變化之影響.........................126
4.7.4 比較本研究與文獻其他研究中溫度對生物淋溶法之影響.......127
4.7.5 溫度對總可萃取重金屬(TEHM)溶出效率之影響...............128
4.7.6 溫度對生物淋溶前後重金屬鍵結型態變化之影響.............130
第五章 結論..................................................135
第六章 建議與未來方向........................................138
第七章 參考文獻..............................................139
黃檀溪,土壤細菌的生態與分離,國立教育資料館主編,第65-68頁,台北(1978)。
陳靜生,水環境化學,曉園出版社,台北(1992)。
Adams W.J., Kimerle R.A. and Barnett Jr. J.W.“Sediment quality and Aquatic
Life Assessment”, Environ. Sci. Technol., 26, pp.1864-1875, 1992.
Ahonen L., Tuovinen O.H.“Temperature effects on bacterial leaching of sulfide
minerals in shake flask experiments”, Appl. Environ. Microbiol., 57, pp. 38-
145, 1991.
Anderson B.C., Brown A.T.F., Watt W.E. and Marsalek J.“Biological leaching of
trace metals from stormwater sediments: influential variables and continuous
reactor operation”, Wat. Sci. Technol., 38, pp.73-81, 1998.
Belzile n., Lecomte P. and Tessier A.“Testing readsortion of trace elements
during partial chemical extractions of bottom sediment”, Environ. Sci. Tech.,
23, pp.1015-1020, 1989.
Belzunce-Segarra M.J., Bacon J.R., Prego R. and Wilson M.J.“Chemical forms of
heavy metals in surface sediments of the San Simon inlet, Ria de Vigo, Galicia
”,J. Environ. Sci. Health (A), 32, pp.1271-1292, 1997.
Blais J.F., Tyagi R.D., Auclair J.C. and Lavoie M.C.“Indicator bacteria
reduction in sewage sludge by a metal bioleaching process”, Wat. Res., 26 ,
pp.487-495, 1992a.
Blais J. F., Tyagi R.D., Auclair J.C.“Bioleaching of metals from sewage
sludge by sulfur-oxidizing bacteria”, J. Environ. Eng., 118, pp.690-707,
1992b.
Blais J.F., Tyagi R.D., Auclair J.C. and Huang C.P.“Comparison of acid and
microbial leaching for metal removal from municipal sludge”, Wat. Sci.
Technol., 26, pp.197-206, 1992c .
Blais J.F., Tyagi R.D. and Auclair J.C.“Bioleaching of metals from sewage
sludge: effects of temperature”, Wat. Res., 27, pp.111-120, 1993a.
Blais J.F., Tyagi R.D. and Auclair J.C.“Bioleaching of metals from sewage
sludge: micro-organisms and growth kinetic”, Wat. Res., 27, pp.101-110, 1993b.
Bloomfield C. and Pruden G.“The effects of aerobic and anaerobic incubation
on extractability of heavy metals in digested sludge”, Environ. Pollut., 8,
pp.217-232, 1975.
Boothman W.S.“Characterization of trace metal associations with polluted
marine sediment by selective extraction”, In:Chemical and Biological
Characterization of Sludges, Sediment, Dredge Spoils, and Drelling Muds, eds
Lichenberg J. J., Winter F. A., Weber C. I. and Fradheim L., American Society
Test. Mater. Spec. Tech. Publ., USA, pp.81-92, 1988.
Boughriet A., Ouddanc B., Fischer J.C., Wartel M. and Leman G.“Variability of
dissolved Mn and Zn in the Seine estuary and chemical speciation of these
metals in suspended”, Wat. Res., 26, pp.1359-1378,1992.
Campbell P.G., Lewis A.G., Chapman P.M., Crowder A.A., Fletcher N.K., Imber
B., Louma S.N., Stokes P.M. and Winfrey M.“Biological available metals in
sediment”, In:National Research Council of Canada, NRCC27694, Québec,
Canada, pp.298, 1988.
Calmano W., Hong J. and Förstner U.“Binding and mobilization of heavy
metals in contaminated sediment affected by pH and redox potential”, Wat.
Sci. Technol., 28, pp.223-235,1993.
Chartier M.“Development of a process to remove metals from sediment, Master
Thesis. INRS-Eau, Université du Québec, Sainte-Foy, QC, Canada,
pp.272, 1992.
Chartier M. and Couillard D.“Biological process: the effect of initial pH,
percentage inoculum and nutrient emrichment on the solubilization of sediment
bound metals”, Wat. Air Soil Pollut., 96, pp.249-267, 1997.
Chartier M., Mercier G. and Blais J. F.“Partitioning of trace metals before
and after biological removal of metals from sediment”, Wat. Res., 35, pp.
1435-1444, 2001.
Chen S.Y. and Lin J.G.“Factors affecting bioleaching of metal contaminated
sediment with sulfur-oxidizing bacteria”, Wat. Sci. Technol., 41, pp.263-270,
2000.
Chen S.Y. and Lin J.G.“ Bioleaching of heavy metals from sediment:
significance of pH ”, Chemosphere, 44, pp.1093-1102, 2001.
Chen S.Y., Chiu Y.C., Chang P.L. and Lin J.G.“Assessment of recoverable forms
of sulfur particles used in bioleaching of cotaminated sediments”, Wat. Res.,
37, pp.450-458, 2003.
Cornwell D.A., Westermoff G.P. and Cline G.C.“Batch feasibility testing of
heavy metals removal from wastewater sludge with liquid-ion exchange”, Proc.
Mid. Atlantic Waste Conf., 12 Tm Bucknell Univ., Lewisburg, PA, July13-15, pp.
111-119, 1980.
Couillard D. and Mercier G.“Bacterial leaching of heavy metals from sewage
sludge-bioreactors comparasion”, Environ. Pollut., 66, pp.237-253, 1990.
Couillard D. and Chartier M.“Removal of metals from aerobic sludges by
Biological solubilization in batch reactors”, J. Biotech., 20, pp.163-180,
1991.
Couillard D. and Chartier M.“Biological removal of metals from sediment: the
influence of the energy substrate, the solid content and the temperature”,
Environ. Technol., 14, pp.919-930, 1993.
Couillard D., Chartier M and Mercier G.“Removal of Cd, Cu, Mn and Zn from
metal laden sediments by biological solubilization, Rev. Sci. Eau., 7, pp.251-
268, 1994.
Couillard D. and Mercier G.“Optimal residence time (in CSTR and Airlift
Reactor) for bacterial leaching of metals from sewage sludge, Wat. Res., 25,
pp.211-218, 1991.
Damian S.“Developing National Sediment Quality Criteria”, Environ. Sci.
Technol., 22, pp.1256-1261, 1988
Environment Canada.“Plan ďutilistion des matériaux dragués
dans le fleuve St-Lauret”, Annexe no 6. Rápport soumis au comit&
eacute; ďétude sur le fleuve St-Laurent par la direction gé
nérale des eaux intérieures, p173, 1978.
Elzeky M. and Attia Y.A.“Effect of bacterial adaptation on kinetics and
mechanisms of bioleaching ferrous sulfides”, Chem. Eng. J., 56, pp. 115-124,
1995.
Förstner U.“Chemical forms and reactivities of metals in sediment”,In:
Chemical Methods for Assessing Bioavailable Metals in Sludges and Soils, R.
Leschhber et al. (eds), Elsevier, London, pp.1-10,1985.
Förstner U.“Contaminated sdeiment”, In lecture Notes in Earth Sciences,
eds. Bhattacharij, et al., pp.1-157,1989.
Förstner U., Ahlf W., Calmano W. and Kersten M.“Sediment criteria
development”, In: Heling D., Rothe P., Förstner U. and Stoffers P. (
Eds.) Sediment and Environmental Chemisty. Springer, Berlin, pp.311-338, 1990.
Förstner U, Ahlf W. and Calmano W.“Sediment quality Objectives and
Criteria Development in Germany”, Wat. Sci. Tech., 28, pp.307-314, 1993.
Fuller C.C., Davis J.A., Cain D.J., Lamothe P. J., Fernandez G., Vargas J. A.
and Murillo M. M.“Distribution and transport of sediment-bound metal
contaminations in the Rio Grande de Tarcoles, Costa Rioca (Central America)”,
Wat. Res., 24, pp.805-812, 1990.
Gunn A.M., Winnard D.A. and Hunt D.T.E.“Trace metal speciation in sediment
and soil: an overview from a water industry perspective”, In Metal Speciation;
Theoty, Analysis and Application, eds J. Kramer and H. E. Allen, Lewis
Publishers, Chelsea, MI, USA, pp.263-264, 1988.
Hayes T.D., Jewell W.J. and Kabrick R.M.“Heavy metals removal from sludges
using combined biological/chemical treatment”, Proc. 34th Ind. Waste Conf.,
Purdue Univ., West Lafayette, Indiana, pp.529-543, 1980.
He X.T., Logan T.J. and Traina S.J.“Physical and chemical characteristics of
selected U.S. municipal solid waste composts, J. Environ. Qual., 24, pp. 543-
552,1995.
Hiromitsu S., Yotaka K. and Kazuo S.“Distribution of heavy metals in water
and sieved sediment in the Toyohira river”, Wat. Res., 20, pp.559-567, 1986.
Janssen A.J.H., Sleyster R., Van Der Kaa C., Jochemsen A., Bontsema J.,
Lettinga G. “Biological sulfide oxidation in a fed-batch reactor”,
Biotechnol. Bioeng., 47, pp.327-333, 1995.
Jain D.K. and Tyagi R.D. “Leaching of heavy metals from anaerobic sewage
sludge by sulfur-oxidizing bacteria” , Enzyme Microb. Technol., 14, pp. 376-
383, 1992.
Jenkins R. L., Benjamin J. S., Marvin L. S. Rodger B., Lo M. P. and Huang R. T.
“Metal removal and recovery from municipal sludge”, J. Wat. Pollut. Control
Fed., 53, pp.25-32,1981.
Juan G.M. and Sosa A.M.“Trace metals in Valencia lake (Venezuela) sediment”,
Wat. Air Soil pollut., 77, pp.141-150,1994.
Kabata-Pendias A.“Trace metals in soils in Poland-occurrence and behaviour”,
Trace Subst. Environ. Health, 25, pp.53-70, 1992.
Karavaiko G.I., Rossi G., Agates A.D., Groudev S.N. and Avakyan Z.A.“
Biogeotechnology of Metals: Manual for International Project GKNT”, Moscow,
Soviet Union, 1988.
Keraten M. and Förstner U.“Geochemical characterization of the potential
trace metal mobility in cohesive sediments”, Geo-Marine Letters, 11, pp. 184-
187, 1991.
Kiff R.J. and Brown S.“The development of an oxidative acid hydrolysis
process for sewage sludge detoxification”Proc. Int. Conf. Heavy Metals in the
Environment, Amsterdam, September, pp.159, 1981.
Kitada K., Ito A., Yamada K., Aizawa J. and Umita T.“Biological leaching of
heavy metals from anaerobically digested sewage sludge using indigeneous
sulfur-oxidizing bacteria and sulfur waste in a closed system”, Proceeding of
1st World Water Congress of the International Water Association, pp.359-366,
2000.
Leving C. D.“The ecologival consequences of dredging and dredge spoil
disposal in Canadian Waters. NRCC # 18130 ”, pp.140, 1982.
Literathy P., Nasser Ali L., Zarba M.A. and Ali M.A.“The role and problems of
monitoring bottom sediment for pollution assessment in the coastal marine
environment”, Wat. Sci. Technol., 19, pp. 781-792,1987.
Lo S.L. and Chen Y. H.“Extracting heavy metals from municipal and industrial
sludges”, Sci. Total Environ., 90, pp.99-116, 1990.
Lombardi A. T. and Garcia O. Jr. “Biological leaching of Mn, Al, Zn, Cu and
Ti in an anaerobic sewage sludge effectuated by Thiobacillus ferrooxidans and
its effect on metal partitioning”, Wat. Res., 36, pp.3193-3202, 2002.
Luoma S.N.“Can we determine the biological availability of sediment-bound
trace element?”, Hydrobiology, 176/177, pp.379-396, 1989.
Marquenie J.M.“Bioavailability of micropollutants”, Environ. Technol. Lett.,
6, pp.351-358, 1985.
Mercier G., Chartier M. and Couillard D.“Strategies to maximize the microbial
leaching of lead from metal-contaminated aquatic sediment”, Wat, Res. , 30,
pp.2452-2464, 1996.
Mcintosh A.“Trace metals in freshwater sediment: a review of the literature
and an assessment of research needs”, In:Metal Ecotoxicology: Concepts and
Application, Lewis Publishers, Chelsea, Michigan, USA, pp.243-260, 1991.
Mulligan C.N., Yong R.N. and Gibbs B.F.“Remediation technologies for metal-
contaminated soils and groundwater: an evaluation”, Eng. Geol., 60, pp.193-
207,2001.
Nelson D.W. and Sommer L.E.“Total carbon, organic carbon and organic matter
”, In: Page, A.L. (Eds.). Methods of Soil Analysis, Part 2, Chemical and
Microbiological properties. American Society of Agronomy, Madison, Wisconsin,
U.S.A., pp.538-580, 1982.
Noel R. Krieg, John G. Hol, bacteria,“Bergy’s Manual of Systematic
Bacteriology”, pp.1845, 1984.
Olver J.W., Kreye W.C. and King P.H.“Heavy metal release by chlorine
oxidation of sludge”, J. Wat. Pollut. Control Fed, 47, pp.2490-2497, 1975.
Pardo R., Barrado E., Perez L. and Vega M.“Determination and speciation of
heavy metal in sediment of the Pisuerga river”, Wat. Res., 24, pp. 337-343,
1990.
Perez-Cid B., Lavilla I. and Bendicho C.“Speeding up of a three-stage
sequential extraction method for metal speciation using focused ultrasound”,
Analytica Chimica Acta, 360, pp.35-41, 1998.
Raad A.A.“Manual on soil sampling and methods of analysis”, in J. A.
McKeague (ed). Soc. Soil Sci., Ottawa. ON., 1978.
Ramos L., Hernandez L.M. and Gonzalez M.J.“Sequential fractionation of
copper, lead, cadmium and zinc in soils or near Donana National Park”,J.
Environ. Qual., 23, pp.50-57, 1994.
Richard L. Jenkins, Benjamin J. Scheybeler, Marvin L. Smith, Rodger Baird,
Mingon P. Lo and Roger T. Haug“Metal removal and recovery from municipal
sludge”, J. Wat. Pollut. Control Fed., 53, pp.25-32, 1981.
van Ryssen R., Leermakers M.and Baeyens W.“The mobilization potential of trac
metals in aquatic sediments as a tool for sediment quality classification”,
Environ. Sci. Policy , 2, pp.75-86,1999.
Rauret G.“Extraction procedures for the determination of heavy metals in
contaminated soil and sediment”, Talanta, 46, pp.449-455, 1998.
Schönborn W. and Hartmann H.“Bacterial leaching of metals from sewage
sludge”, Eur. J. appl. Microbiol. Biotechnol., 5, pp.305-313, 1978.
Seidel H., Ondrusch K. J., Morgenstern P. and Stottmeister U.“Bioleaching of
heavy metals from contaminated aquatic sediments using indigenous sulfur-
oxidizing bacteria:a feasibility study“International Conference on
Contaminated Sediments, Preprints, Vol. I, pp.420-427, 1997.
Seidel A., Zimmels Y. and Armon R.“Mechanism of bioleaching of coal fly ash
by Thiobacillus thiooxidants”, Chem. Eng. J., 837, pp.123-130, 2001.
Shea D.“Developing national sediment quality criteria”, Environ. Sci.
Technol., 102, pp.313-328, 1988.
Singh S.P., Tack F.M. and Verloo M.G.“Heavy metal fractionation and
extractability in dredged sediment derived surface soils”,Wat. Air Soil
Pollut., 22, pp.1256-1261, 1998.
Sreekrishnan T.R., Tyagi R.D., Blais J.F. and Campbell P.G.C.“Kinetics of
heavy metal bioleaching from sewage sludge-I. effects of process parameters
”, Wat. Res., 27, pp.1641-1651, 1993.
Sreekrishnan T.R. and Tyagi R.D.“Sensitivity of metal-bioleaching operation
to process variables”, Proc. Biochem., 30, pp.69-80, 1995.
Sreekrishnan T.R., Tyagi R.D., Blais J.F., Meunier N. and Campbell P.G.C.“
Effect of sulfur concentration on sludge acification during the SSDML process s
”, Wat. Res., 30, pp.2278-2738, 1996.
Tasi L. J., Yu K.C., Chang J.S. and Ho S.T.“Fractionation of heavy metals in
sediment cores from the Ell-Ren river, Taiwan”Wat. Sci. Technol., 37, pp. 217-
224, 1998.
Tessier A., Gampbell P., and Bisson M.“Sequential Extraction Procedure for
the Speciation of Particulate Trace Metals”, Anal. Chem., 51, pp. 844-851,
1979.
Tessier A., Rapin F. and Carignan R. “Trace metals in oxic lake sediments:
possible adsorption onto iron oxyhydroxides”, Geochim. Cosmochim. Acta., 47,
pp.1091 -1098, 1985.
Tessier A. and Campbell P.G.C. “Partitioning of trace metals in sediment and
it relationship to their accumulation in benthic organisms”, In metal
speciation in the Environment, eds Broekaert J. A. C., Gucer S. and Adams F.,
Springer, Berlin, Germany, pp.545 -563, 1990.
Tyagi R.D. and Couillard D. “Bacterial leaching of metals from digested
sewage sludge”, Proc. Biochem., 22, pp.114 -117, 1987.
Tyagi R.D., Couillard D. and Tran F.T. “Heavy metals removal from
anaerobically digested sludge by chemical and microbiological methods”,
Environ. Pollut., 50, pp.295 -316, 1988.
Tyagi R.D. and Couillard D. “Bacterial leaching of metals from sludge” , In
Encyclopedia of Environmental Control Technology. (Edited by Cheremisinoff P.
E.). Library of environmental Pollution control Technology, Gulf Publishing
Co., Texas, Vol. 3, pp. 557-591, 1989.
Tyagi R.D., Couillard D. and Tran F.T.“Studies on microbial leaching of heavy
metals from municipal sludge”, Wat. Sci. Technol., 22, pp.229-238, 1990.
Tyagi R.D., Couillard D. and Grenier Y.“Effects of medium composition on the
bacterial leaching of metals from digested sludge”, Environ. Pollut., 71, pp.
57-67, 1991.
Tyagi R.D. and Tran F.T.“Microbial leaching of metals from digested sewage
sludge in continuous system”, Environ. Technol. Letters, 12, pp.303-312, 1991.
Tyagi R.D., Blais J.F., Auclair J.C. and Meunier N.“Bacterial leaching of
toxic metals from municipal sludge: influence of sludge characteristics”,
Wat. Environ. Res., 65, pp.196-204, 1993.
Tyagi R.D., Sreekrishnan T.R., Blais J.F. and Campbell P.G.C.“Kinetics of
heavy metal bioleaching from sewage sludge-III. temperature effects”, Wat.
Res., 28, pp. 2367-2375, 1994.
Tyagi R.D., Meunier N. and Blais J.F.“Simultaneous sewage sludge digestion
and metal leaching-effect of temperature”, Appl. Microbiol. Biotechnol.,
46, pp.422-431, 1996.
Tyagi R.D., Blais J.F., Meunier N., and Benmoussa H.“Simultaneous sewage
sludge digestion and metal leaching-effect of sludge solids concentration”,
Wat. Res., 31, pp.105-118, 1997.
U.S. EPA,“Guide to Disposal of Chemically Stabilized and Solidified Wastes”,
SW-872 Office of Solid Waste and Emergency Response , Washington, DC, 1982.
U.S. EPA,“Selecting Remediation Techniques for Contaminated Sediment”, EPA-
823-B93-001 U.S. Environmental Protection Agency, 1993.
U.S. EPA,“EPA’s Contaminated Sediment Management Strategy”, EPA-823-R-98-
001 U.S. Environmental Protection Agency, 1998.
Warran L.A. and Zimmerman A.P.“Trace metal-suspended particulate matter
associations in a fluvial system: physical and chemical influences”,In:
Particulate Matter and Aquatic Contaminants, ed. S. S. Rao, Lewis Publishers,
Chelsea, MI, USA, pp.127-155,1993.
Wong L. and Henry J.G.“Bacterial leaching of heavy metals from anaerobically
digested sludge”, Wat. Pollut. Res. J. Can., 18, pp.151-162, 1983.
Wong L. and Henry J.G.“Decontaminating biological sludge for agricultural use
”, Wat. Sci. Technol., 17, pp.575-586, 1984.
Wong L. and Henry J.G.“Bacterial leaching of heavy metals from anaerobically
digested sludge”, In Biotreatment Systems (Edited by Wise, D.L.) CRC Press
Inc., Bocca Raton, Florida, pp.125-169, 1988.
Xiang L., Chan L.C. and Wong J.W.C.“Removal of heavy metals from anaerobically
digested sewage sludge by isolated indigenous iron-oxidizing bacteria”,
Chemosphere, 41, pp.283-287, 2000.
Yu K.C., Ho S.T., Chang J.K. and Lai S.D.“Multivariate correlation of water
quality, sediment and benthic bio-community components in Ell-Ren river
system, Taiwan”, Wat. Air and Soil Pollut., 84, pp.31-49, 1995.
Yu K.C., Ho S.T., Tasi L.J., Chang J.S. and Lee S.Z.“Remobilization of zinc
from Ell-Ren river sediment fractions affected by EDTA, DTPA and EGTA”,Wat.
Sci. Tech., 34, pp.125-132, 1996.
Yu K.C., Ho S.T., Chang J.S. and Tasi L.J.“Remobilizations of lead, nickel
and copper from Ell-Ren river sediment fractions affected by EDTA, DTPA and
EGTA”,Toxicol. and Environ. Chem., 58, pp.85-101, 1997.
Yu K.C., Ho S.T., Tsai L.J., Hong M.Y., Chang J.S., and Chang J.K.“Assessing
the toxicity of heavy metals in the ELL-REN river sediment by using acid
volatile sulfide and simultaneously extracted metal”, 3rd IWA Specialized
Conference on Hazard Assessment and Control of Environments, Otsu, Japan, 1999.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔