跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.84) 您好!臺灣時間:2024/12/03 09:46
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:劉祐杰
研究生(外文):Yow-Jyc Liu
論文名稱:單一散度高分子螯合顆粒之製備
論文名稱(外文):Preparation of Monodisperse Polymeric Chelating Particles
指導教授:許克瀛
指導教授(外文):Keh-Ying Hsu
學位類別:碩士
校院名稱:中原大學
系所名稱:化學工程研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2003
畢業學年度:91
語文別:中文
論文頁數:118
中文關鍵詞:高分子螯合樹脂重金屬離子螯合基分散聚合法吸附
外文關鍵詞:heavy metal ionchelating resinadsorptionchelating groupdispersion polymerization
相關次數:
  • 被引用被引用:3
  • 點閱點閱:201
  • 評分評分:
  • 下載下載:25
  • 收藏至我的研究室書目清單書目收藏:0
高分子螯合樹脂是一種功能性高分子,藉由配位共價鍵結而對金屬離子具有選擇性及吸附能力。本研究利用分散聚合法和二步驟腫脹法,製備具孔隙性微米級單一散度之聚-縮水甘油甲基丙烯酸酯-三羥基甲醇丙烷三甲基丙烯酸酯共聚合顆粒當作基材,並以不同種類螯合基與基材上的環氧基行開環反應進行改質,而得螯合樹脂。探討:(1)以過量濃度之不同螯合基種類(如:2-胺甲基吡啶、N-苯甲基甲胺、噻吩-2-乙基胺、2-胺基- 3-甲基吡啶、3-胺基- 4-甲基吡啶及4-胺甲基吡啶)分別接枝改質共聚合顆粒,測試其對銅離子吸附效能。找出一最佳吸附效率的螯合基,2-胺甲基吡啶,分別以此螯合基不同含量下導入改質共聚合顆粒,探討接枝改質量對銅離子吸附量的影響。(2)固定單體總相(單體及交聯共單體),改變單體與交聯劑比例,再以過量濃度之2-胺甲基吡啶螯合基進行改質,探討不同孔隙度與比表面積對銅離子吸附量的影響。(3)改變吸附操作條件:如溫度、pH值、微量的重金屬離子初始濃度、吸附時間、混合微量的重金屬離子溶液…等,對吸附能力和吸附速率的影響。(4)所得的螯合樹脂經由多次重覆吸附脫附再生,以瞭解其再生能力的效能。
ABSTRACT
Polymeric chelating resin is a kind of functional polymer, which possesses capability to select and adsorb metal ions via coordination bonding. Micro-sized monodispersion porous poly(glycidylmethacrylate-co-trimethylolpropanetrimethacrylate) copolymer particles were prepared by dispersion polymerization and two-step swelling method used as polymeric substrate. These particles were modified by several kinds of chelating group via a ring-opening reaction, in which the epoxy group on glycidyl methacrylate reacted with the chelating group in solvent, respectively, to obtain chelating resin particles. The objectives of this study are: (1) The effect of the different kinds of the chelating group, 2-(aminomethyl)pyridine, N-methylbenztlamine, thiophene-2-ethylamine, 2-amino-3-picoline, 3-Amino-4-methyl-pyridine and 4-(aminomethyl)pyridine, with excess amount to modify and obtain resins on the metal uptake capacities, copper ion , was investigated to find the best one for the following study. Using different amount of 2-(aminomethyl)pyridine to modify and discuss the effect of grafting degree to metal uptake capacity. (2) Fixed the amount of monomers (monomer and crosslinking agent), then changing the ratio of the monomer to crosslinking agent, and using excess 2-(aminomethyl)pyridine to modify polymeric substrate, the effects of the specific surface area, pore size and porosities on the metal uptake capability, copper ion, were studied. (3) The effects of the adsorption operating conditions, such as: temperature, pH value, initial metal ion concentration, adsorption time, mixed metal ion concentration, …etc, on the metal ion uptake capability and adsorption rate were investigated. (4) The recovery of the chelating resin was studied also to understand its regeneration capability.
目錄
中文摘要…………………………………………………………..…..Ⅰ
英文摘要……………………………………………………………....Ⅱ
致謝….…………………………………………………………..……..Ⅳ
目錄 ….……………………….……………………………..……….VI
表目錄……………………………………………………………X
圖目錄………………………………………..………………….…XIII



第一章 緒論…………………………………………………………1
1-1 前言……………………………………………………………...…1
1-2 簡介…………………………………...…………………..………..3
1-3 研究動機........….…..…..….……………..……………………….4



第二章 文獻回顧…………………………………………………..6
2-1 單一散度粒種之合成…………...………………………………7
2-2 二步驟粒種乳化聚合法製備孔隙性共聚合顆粒...….……8
2-3 高分子螯合顆粒吸附材之製備………..……………………10


第三章 理論………………………………………………………..18
3-1 分散聚合法……...……………………………………………18
3-2 粒種乳化聚合法……………………………………………..18
3-3顆粒內部之型態………………………………………...…19
3-4 孔隙形成的機構……………………………………………..19
3-5 穩定劑效應…………………………………………………..20
3-6 萃取…………………………………………………………….22
3-7 吸附理論………………………………………………………...22
3-7-1 物理吸附……………..………………………………………23
3-7-2 化學吸附………………………………………………………23
3-8 錯合與螯合狀態………………………………………………..24
3-9 配位基的分類…………………………………………………25
3-9-1 雙芽基團配位基……………………………………..………..26
3-9-1-1 雙酸基配位基………………………………………………..26
3-9-1-2 雙鹼基配位基………………………………..……………...26
3-9-1-3 一酸一鹼基配位基…..……………………………...……….27
3-9-2 多芽基團配位基……………………………………………….27


第四章 實驗部份…………………………………………………34
4-1 實驗藥品………………………………………………………34
4-2 實驗儀器設備…………..……………………………………37
4-3 實驗步驟………….…………………………………………..39
4-4 螯合樹脂對金屬離子之吸附測試……….……………………..41



第五章 結果與討論…………………………………………….46
5-1 粒種之製備……………………………………………………...46
5-2 稀釋劑種類對共聚合顆粒結構的影響…………………….46
5-3孔隙性共聚物顆粒的製備………………………………….48
5-4 萃取對GMA-TRIM共聚合顆粒性質的影響……………48
5-5 高分子螯合顆粒吸附材之製備…………………………….49
5-6 樹脂螯合狀態的特性………………………………………….53
5-7 金屬離子吸附量……………………………………………...55
5-8 酸鹼值對銅離子吸附的影響………………………………..57
5-9 溫度對銅離子吸附量的影響………..………………………58
5-10 銅離子濃度對樹脂吸附量的影響……………………….59
5-11 混合金屬離子溶液對銅離子吸附的影響……….……….60
5-12 吸附時間對吸附量的影響……………………………….61
5-13 螯合樹脂對銅離子吸附之再生利用…………………...61



第六章 結論……………………………………………………….63
參考文獻…………………………………………………………….65





















表目錄
Table 1 Recipes for the polystryrene seeds by dispersion polymerization
………………………………………………………………..68
Table 2 The solubility parameter of ingredient using as a seed ……68
Table 3~4 Recipes for chelating resin ……...………………………...69
Table 5~6 Recipes for chelating resin ……………………………….70
Table 7~8 Recipes for chelating resin ……………………………….71
Table 9-1 孔隙性顆粒之結構性質…………………………………….72
Table 9-2 孔隙性顆粒之結構性質…………………………………….73
Table 9-3 孔隙性顆粒之膨潤度測試………………………………….73
Table 10-1 螯合樹脂在酸鹼值5.5及溫度30℃時,對銅離子的吸附量………………………………..………….74
Table 10-2 螯合樹脂在酸鹼值5.5及溫度30℃時,對銅離子的吸附量………………………………………….75
Table 10-3 螯合樹脂在酸鹼值5.5及溫度30℃時,對銅離子的吸附量………………………………………….75
Table 11-1 樹脂A 在不同酸鹼值及溫度下對金屬離子的吸附量…………………………………………………76
Table 11-2 樹脂B 在不同酸鹼值及溫度下對金屬離子的吸附量…………………………………………………76
Table 11-3 樹脂C 在不同酸鹼值及溫度下對金屬離子的吸附量…………………………………………………77
Table 11-4 樹脂D 在不同酸鹼值及溫度下對金屬離子的吸附量…………………………………………………77
Table 11-5 樹脂E 在不同酸鹼值及溫度下對金屬離子的吸附量…………………………………………………78
Table 11-6 樹脂F 在不同酸鹼值及溫度下對金屬離子的吸附量…………………………………………………78
Table 12-1 銅離子濃度對樹脂A 吸附的影響….………….79
Table 12-2 銅離子濃度對樹脂B 吸附的影響….………….79
Table 12-3 銅離子濃度對樹脂C 吸附的影響….………….80
Table 12-4 銅離子濃度對樹脂D 吸附的影響….………….80
Table 12-5 銅離子濃度對樹脂E 吸附的影響….………….81
Table 12-6 銅離子濃度對樹脂F 吸附的影響….………….81
Table 13 樹脂在混合金屬溶液中對各金屬離子的吸附量...82
Table 14 樹脂的再利用性……………..………………………83


















圖目錄
Fig. 5-1-1 聚苯乙烯粒種SEM圖…………..…………………84
Fig. 5-1-2 聚苯乙烯粒種之粒徑分佈圖……………………..85
Fig. 5-5-1 樹脂A改質前後之FTIR圖,(a)熱萃前(b)熱萃後(c)改質前(d)改質後………...…..…………………………….86
Fig. 5-5-2 樹脂B改質前後之FTIR圖,(a)熱萃前(b)熱萃後(c)改質前(d)改質後………...…..…………………………….87
Fig. 5-5-3 樹脂C改質前後之FTIR圖,(a)熱萃前(b)熱萃後(c)改質前(d)改質後………...…..…………………………88
Fig. 5-5-4 樹脂D改質前後之FTIR圖,(a)熱萃前(b)熱萃後(c)改質前(d)改質後………...…..…………………………89
Fig. 5-5-5 樹脂E改質前後之FTIR圖,(a)熱萃前(b)熱萃後(c)改質前(d)改質後………...…..…………….……………90
Fig. 5-5-6 樹脂F改質前後之FTIR圖,(a)熱萃前(b)熱萃後(c)改質前(d)改質後………...…..…………………….……91
Fig. 5-5-7 GMA-TRIM共聚合顆粒13C碳譜……..……………..…92
Fig. 5-5-8 樹脂A改質後之13C碳譜…….………………………...93
Fig. 5-5-9 樹脂B改質後之13C碳譜…….………………………...94
Fig. 5-5-10 樹脂C改質後之13C碳譜…….…………….……..……..95
Fig. 5-5-11 樹脂D改質後之13C碳譜…….………………...……...96
Fig. 5-5-12 樹脂E改質後之13C碳譜…….………………..……...97
Fig. 5-5-13 樹脂F改質後之13C碳譜…….…………….…..……...98
Fig.5-9-1 樹脂A於不同溫度下對Cu2+離子吸附的影響
(30℃,50ppm)……….………………….……..………99
Fig.5-9-2 樹脂B於不同溫度下對Cu2+離子吸附的影響
(30℃,50ppm)…………………………………………99
Fig.5-9-3 樹脂C於不同溫度下對Cu2+離子吸附的影響
(30℃,50ppm)……….………….……………………100
Fig.5-9-4 樹脂D於不同溫度下對Cu2+離子吸附的影響
(30℃,50ppm)……..….…………...…………………100
Fig.5-9-5 樹脂E於不同溫度下對Cu2+離子吸附的影響
(30℃,50ppm)……….…..………...…………………101
Fig.5-9-6 樹脂F於不同溫度下對Cu2+離子吸附的影響
(30℃,50ppm)………..………………………………101
Fig. 5-13-1 吸附量隨時間變化圖( pH=5.5,30℃,50 ppm )……….102
1. A. Denizli, B. Salih, S. Senel and M. Y. Arica, J. of Appl. Polym. Sci., 68, 657(1998).
2. C. J. King,” Separation Processes “ 2nd ed. New York, Mc Graw-Hill, 1980.
3. K Naka, Y. Tachiryama, A.Ohki and S. Maeda, J. of Appl. Polym. Sci., 34,1003(1996).
4. C. Kavakli, N. Ozvatan, S. Ali Tuncel, B. Salih, Analytica Chimica Acta, 464, 313(2002).
5. Z. Matejka, Z. Zitkova, Reactive and Functional Polymers, 35, (1997) 81.
6. M. J. Semmens, W. Martin, AIChE Sympos. Series. Water, 76, 367(1980).
7. RW. Peters, Y. Ku, D. Bhattacharyya, AIChE Sympos. Series. Separation of Heavy Metals and Other Trace Contaminants, 81 (243), 165(1985).
8. H. Kasgoz, S. Ozgumus, M. Orbay, Polymer, 44 , 1785(2003).
9. K. Kesenci, R. Say, A. Denizli, European Polymer Journal, 38, 1443(2002).
10. J. Stary, Annal. Chim. Acta., 28, 132(1963).
11. J. B. Stephenson, J. C. Hogan, R. S. Kaplan, Environ. Prog., 3, 50(1984).
12. A. Denizli, K. Kesenci, M. Y. Arica, B. Salih, V. Hasirci, E. Piskin, Talanta, 46, 551(1998).
13. A. Denizli, R. Say, S. Patir, Y. Arica, Reactive & Functional Polymers, 46, (2000) 157.
14. A. Warshawsky, A. Patchornik, Israel Journal of Chemistry, 17 (1978) 307.
15. A. A. Audu, Reactive and Functional Polymers, 10 (1989) 3.
16. A. Warshawsky, A. Dwshe, Reactive and Functional Polymers, 2 (1984) 301.
17. J. Wiley, Sons, “Syntheses and Separations Using Functional Polymers”, chap.10,1988.
18. W. S. Wan Ngah, C. S. Endud, R. Mayanar, Reactive & Functional Polymers, 50, (2002) 181.
19. R. Arshady, J. Microencapsulation, Vol._5, No. 2, 101(1998) .
20. R. Arshady, Colloids and Ploymer Sci., 270, 717(1992).
21. C. M. Cheng, F. J. Micale, J. W. Venderhoff, and M. S. El-Aasser, J. of Polym. Sci. Part A : Polym. Chem., 30, 235-244(1992).
22. C. M. Cheng, J. W. Venderhoff, and M. S. El-Aasser, J. of Polym. Sci. Part A : Polym. Chem., 30, 245-256(1992).
23. V. Smigol and F. Sevc, J. of Appli. Polym. Sci., 46, 1439-1448(1992).
24. V. Smigol and F. Sevc, J. of Appli. Polym. Sci., 48, 2033-2039(1993).
25. T. Corner, Colloids and Surfaces, 3, 119(1981).
26. C. K. Ober, K. P. Lok, and M. L. Hair, J. Polym. Sci. : Polym. Lett. Ed., 23, 103(1985) .
27. S. Shen, E. D. Sudol, and M. S. EI-Aasser, J. of Appl. Polym. Sci. : Part A : Polym. Chem., 32, 1087(1994).
28. J. Ugelstad, K. H. Kaggerud, F. K. Hansen, and A. Burge, Makromol. Chem., 180, 737(1979).
29. J. E. Rosenberg and P. Flodin, Macromolecules, 20, 1518(1987).
30. M. Okubo, K. Ikegami, Y. Yamamoto, Colloid Polym. Sci., 269 217(1991).
31. K.Hosoya, Y. Kishii, N. Tanaka, K. Kimata, S. Maruya, T. Araki, and J. M. J. Frechet, Chemistry Letters, 1145(1992).
32. Gregor, Ind. Engng. Chem. 44, 2834(1952).
33. H. Maeda, H. Egawa, Journal of Applied Science, 33, 1275 (1987).
34. P. M VEN BERKEL et al., Journal of Applied Ploymer Science, 68, 103-109(1998).
35. A. Boudakgi, J. Jezierska, B. N. Kolarz, Makromol. Chem. Symp., 59, 343(1992).
36. YUN LU et al., K. Dev, G. N. Rao, Analyst, 120 (1995) 2509.
37. A. Denizli, E. Piskin, Separation Science and Technology, 31, 715(1996).
38. M. I. Khalil, S. FARAG, Journal of Applied Ploymer Science, 69, 45(1998).
39. A. Denizli, K.Kesenci, Y. Arica, E. Piskin, Reactive & Functional Polymers, 44, (2000)235.
40. A. Saglam, S. Bektas, S. Patir, Reactive & Functional Polymers, 47, (2001)185.
41. R. Say, B. Garipcan, S. Emir, Colloids and Surfaces A : Physicochemical and Engineering Aspects, 196, (2002)199.
42. N. Bicak, D. C. Sherrington, S. Sungur, Reactive & Functional Polymers, 54, (2003)141.
43. S. Shen, M. S. El-Aasser, and J. W. Venderhoff, J. of Polym. Sci. : Part A : Polym. Chem., Vol. 29, 857(1991).
44. 工業污染防治技術手冊之十, 工業廢水離子交換處理
45. Colin F. Bell, Principles and Applications of Metal Chelation, chap. 1, 1977.
46. Fred Basolo Ranald C. Johnson, Coordination Chemistry.
47. J. E. Rosenberg and P. Flodin, Macromolecules, 20, 1518(1987).
48. D. W. Van Krevelen Elsevier, “Properties of Polymer” , third, completely revisted edition, (1990).
49. A. W. Zhang, K, Fischer, D. Bieniek, A. Kettrup, Reactive Polymers, 24 (1994) 49
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top