跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.170) 您好!臺灣時間:2024/12/11 05:54
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:彭文琴
研究生(外文):Wen-Chin Peng
論文名稱:層狀材料及奈米複合材料之合成及鑑定
論文名稱(外文):Synthesis and characterization of lamellar materials and nanocomposites
指導教授:鄭吉豐
指導教授(外文):Chi-feng Cheng
學位類別:碩士
校院名稱:中原大學
系所名稱:化學研究所
學門:自然科學學門
學類:化學學類
論文種類:學術論文
論文出版年:2003
畢業學年度:91
語文別:中文
論文頁數:105
中文關鍵詞:奈米複合材料
外文關鍵詞:compositesnanocomposites
相關次數:
  • 被引用被引用:2
  • 點閱點閱:127
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
摘要
本研究是利用不同的模板試劑合成MCM-50和磷鋁層狀物,在以合成的MCM-50和磷鋁層狀物取代有機黏土,製備奈米複合材。
聚亞醯胺層狀奈米複合材料是利用二苯胺(ODA)溶解在DMAc中和分散在DMAc中的層狀物混和在加入二酸酐(PMDA)。TEM顯示大顆粒層狀物已經轉變成奈米顆粒,分散於聚亞醯胺中形成奈米複合材料,當加入MCM-50和磷鋁層狀物於聚亞醯胺中會提昇熱穩定性和機械性質,並提昇儲貯模數和增加耐燃性。
聚苯乙烯奈米複合材料的製備是利用苯乙烯和分散的層狀物進行自由基聚合反應。由 TEM顯示大顆粒層狀物已經轉變成奈米顆粒,分散於聚苯乙烯中形成奈米複合材料,當加入MCM-50和磷鋁層狀物於聚苯乙烯會提昇熱穩定性和儲貯模數並增加耐燃性。
聚苯乙烯混成製備是利用苯乙烯和磷鋁層狀物熔融混合,由XRD 顯示聚苯乙烯可使磷鋁層狀物的層間距離增加。當加入磷鋁層狀物於聚苯乙烯中會提昇熱穩定性和儲貯模數並增加耐燃性。
Abstract
MCM-50 and lamellar aluminophosphates were synthesized by using different kinds of templates and reagents in this study. Organoic-inorganic nanocomposites were prepared by using layered materials of MCM-50 and lamellar aluminophosphates instead of organophilic clay.
Polyimide nanocomposites have been synthesized from dimethylacetamide (DMAC) solution of 4,4’-oxydianiline diamine (ODA) with a DMAC dispersion of layered materials before adding pyromellitic dianhydride (PMDA). Results of TEM indicated that lamellar materials with size of 10 μm became nanoparticles and well dispersed in polyimide during the polymerization. Thermal stability and mechanical properties, storage modulus and flame retardance of nanocomposites were improved after adding MCM-50 and aluminophosphate.
Polystyrene nanocomposites were prepared by free radical polymerization of styrene containing dispersed layered materials. Results of TEM indicated that lamellar materials with size of 10 μm became nanoparticles and well dispersed in polystyrene. Thermal stability, storage modulus and flame retardance of nanocomposites were improved after adding MCM-50 and aluminophosphate.
Polymer/inorganic hybrids based on the intercalation of melting polymer chains into layered materials. Results of XRD indicated that polystyrene intercalated into lameraller aluminophosphate. Thermal stability, storage modulus and flame retardance of composites were improved after adding aluminophosphate.
目錄
第一章 緒論
1.1 奈米複合材料的簡介………………………………………………1
1.2 奈米複合材料的分類與特性………………………………………2
1.3 層狀化合物的簡介…………………………………………………4
1.4 聚亞醯胺奈米複合材料之簡介……………………………………5
1.5 聚苯乙烯奈米複合材料之簡介……………………………………7
1.6 論文撰寫動機及目的………………………………………………8
第二章 實驗藥品與儀器
2.1 實驗藥品……………………………………………………………9
2.2實驗儀器……………………………………………………………10
第三章 實驗部分
3.1 層狀化合物的合成………………………………………………12
3.1.1 MCM-50的合成……………………………………………12
3.1.2 磷鋁層狀物的合成…………………………………………12
3.2 奈米複合材料之製備……………………………………………12
3.2.1 聚亞醯胺/層狀奈米複合材料之製備……………………12
3.2.2 聚苯乙烯/層狀奈米複合材料之製備……………………16
(1)聚合法…………………………………………………………16
(2)融熔插層法……………………………………………………16
3.3 材料的鑑定與測試 ………………………………………………19
3.3.1 X-ray繞射分析……………………………………………19
3.3.2 FT-IR………………………………………………………19
3.3.3熱重損失分析………………………………………………19
3.3.4 耐燃性質分析………………………………………………20
3.3.5 GPC測量……………………………………………………20
3.3.6機械性質測試………………………………………………20
3.3.7動態機械分析………………………………………………20
3.3.8掃描式電子顯微鏡…………………………………………21
3.3.9 TEM…………………………………………………………21
3.3.10 魔角旋轉固態核磁共振光譜儀…………………………21
第四章 結果與討論
4.1 層狀材料的鑑定…………………………………………………22
4.2 聚亞醯胺/層狀物複合材料之鑑定分析…………………………24
4.2.1 XRD鑑定……………………………………………………24
4.2.2熱穩定性………………………………………………24
4.2.3 FT-IR光譜…………………………………………………30
  4.2.4耐燃性質分析………………………………………………34
4.2.5 聚亞醯胺/層狀複合材料之機械性質……………………36
4.2.6聚亞醯胺/層狀奈米複合材料之動態機械性質分析………39
4.2.7 SEM、TEM之分析………………………………………45
4.2.8聚亞醯胺/層狀奈米複合材料之NMR分析………………49
4.2.9小結…………………………………………………………49
4.3 聚苯乙烯/層狀複合材料之鑑定(聚合法)………………………50
4.3.1 XRD之鑑定…………………………………………………50
4.3.2熱穩定性……………………………………………………50
4.3.3 FT-IR之光譜………………………………………………51
4.3.4 LOI之檢測…………………………………………………57
4.3.5 GPC之分析…………………………………………………60
4.3.6聚苯乙烯/層狀奈米複合材料之動態機械性質……………60
4.2.7 SEM、TEM之分析………………………………………68
4.3.8聚苯乙烯/層狀奈米複合材料之NMR分析………………73
4.3.9小結…………………………………………………………73

4.4 聚苯乙烯/磷鋁層狀奈米複合材料之鑑定分析(融熔插層法)…74
4.4.1 XRD鑑定……………………………………………………74
4.4.2 熱穩定性…………………………………………………74
4.4.3 FT-IR之光譜………………………………………………75
4.4.4 耐燃性質分析………………………………………………75
4.4.5 聚苯乙烯/磷鋁層狀複合材料之動態機械性質…………83
4.4.6小結…………………………………………………………83

第五章 結論 …………………………………………………………84
第六章 參考文獻 ……………………………………………………86

















Figure list
Figure 1-1 Classification of composites……………………………3
Figure 3-1 Flow chart of MCM-50 preparation……………………13
Figure 3-2 Flow chart of lemallar aluminophosphate preparation…14
Figure 3-3 Flow chart of PI nanocomposite preparation…………15
Figure 3-4 Flow chart of PS nanocomposite preparation…………17
Figure 3-5 Flow chart of PS-lamellar composite (melt intercalation )…………………………………………………………18
Figure 4-1 XRD patterns of layered materials……………………23
Figure 4-2 XRD patterns of PI nanocomposites with various lamellar aluminophosphate contents……………………………25
Figure 4-3 XRD patterns of PI nanocomposites with various MCM-50 contents……………………………………26
Figure 4-4 TGA thermograms of PI nanocomposites with variouslamellar aluminophosphate contents…………………27
Figure 4-5 TGA thermograms of PI nanocomposites with variousMCM-50 contents……………………………………28
Figure 4-6 Polymerization reaction of dianhydride and diamine…31
Figure 4-7 FT-IR spectra of PAA ( 1wt% lamellar aluminophoshate ) before and after heat treatment………………………32
Figure 4-8 FT-IR spectra of PAA ( 1 wt% MCM-50 ) before and after heat treatment……………………………………33
Figure 4-9 LOI of PI nanocomposites with different contents of layered materials………………………………………37

Figure 4-10 The storage modulus of PI/lamellar aluminophoshate nanocomposites films at different temperatures………40
Figure 4-11 The storage modulus of PI /MCM-50 nanocomposites films at different temerapture…………………………41
Figure 4-12 The loss modulus of polyimide/lamellar aluminophoshate nanocomposites films at different temeraptures………42
Figure 4-13 The loss modulus of polyimide/MCM-50 nanocomposites films at different temeraptures…………………………43
Figure 4-14 (a) SEM micrographs of lamellar Aluminophoshate; (b), (c), (d) TEM micrographs of polyimide nanocomposites with different contents of lamellar aluminophoshate…46
Figure 4-15 (a), (b) SEM micrographs of MCM-50; (c), (d) TEM micrographs of Polyimide nanocomposites with different contents of MCM-50…………………………………47
Figure 4-16 27Al MAS NMR spectra of polyimide/aluminophoshate lamellar nanocomposite………………………………48
Figure 4-17 XRD patterns of PS nanocomposites with different contents of lamellar aluminophosphate………………52
Figure 4-18 XRD patterns of PS nanocomposites with different contents of MCM-50…………………………………53
Figure 4-19 TGA thermograms of polystyrner nanocomposite withdifferent contents of aluminophoshpate………………54
Figure 4-20 TGA thermograms of polystyrene nanocomposite withdifferent contents of MCM-50…………………………55
Figure 4-21 FT-IR spectra of polystyrene nanocomposites with different contents of lamellar Aluminophoshate………58

Figure 4-22 FT-IR spectra of polystyrene nanocomposites with different contents of MCM-50…………………………59
Figure 4-23 LOI of PS with different contents of layered materials…………………………………………………………62
Figure 4-24 Weight average molecular weight of PS with different contents of layered materials…………………………65
Figure 4-25 The storage modulus of polystyerene/aluminophoshate nanocomposite films at different temperatures………66
Figure 4-26 The storage modulus of polystyerene/MCM-50 nanocomposites films at different temperatures………67
Figure 4-27 (a), (b) SEM micrographs of aluminophoshate ; (c), (d) TEM micrographs of PS with different contents of aluminophoshate………………………………………69
Figure 4-28 (a), (b) SEM micrographs of MCM-50;(c), (d) TEMmicrographs of PS with different contents of MCM-50………………………………………………70
Figure 4-29 27Al MAS NMR spectra of polystyrene/Aluminophoshate nanocomposites………………………………………71
Figure 4-30 29Si MAS spectra of polystyrene/MCM-50 nanocomposite …………………………………………………………72
Figure 4-31 XRD patterns of PS nanocomposites with different contents of lamellar aluminophosphate………………76
Figure 4-32 TGA thermograms of PS composites with various lamellar aluminophosphate contents…………………78
Figure 4-33 FT-IR spectra of polystyrene nanocomposites with different contents of lamellar Aluminophoshate………80
Figure 4-34 Limiting oxygen index for polystyrene/aluminophoshatelamellar anocomposite…………………………………81
Figure 4-35 Limiting oxygen index for polystyrene/aluminophoshatelamellar anocomposite…………………………………82





















Table list
Table 4-1 Thermal decomposition temperatures of PI nanocomposites with different contents of lamellar Aluminophoshate……22
Table 4-2 Thermal decompositions temperatures of PI nanocomposites with different contents of MCM-50………………………22
Table 4-3 FT-IR Assignment for PAA and PI………………………34
Table 4-4 LOI of polyimide with various aluminophosphate contents……………………………………………………………35
Table 4-5 LOI of polyimide with various MCM-50 contents………35
Table 4-6 Mechanical properties of polyimide nanocomposites with various aluminophosphate contents………………………38
Table 4-7 Mechanical properties of polyimide nanocomposites with various MCM-50 contents…………………………………38
Table 4-8 Glass-transition temperatures of polyimide nanocomposites with various aluminophoshate contents……………………44
Table 4-9 Glass-transition temperatures of polyimide nanocomposites with various MCM-50 contents……………………………44
Table 4-10 Thermal decomposition temperatures of polystyrene nanocomposites with different contents of lameller aluminophosphste………………………………………56
Table 4-11 Thermal decomposition temperatures of polystyrene nanocomposites with different contents of MCM-50……56
Table 4-12 FT-IR Assignment for PS and Lameller…………………57
Table 4-13 LOI of polystyrene nanocomposites with different contents of aluminophosphate…………………………………………61

Table 4-14 LOI of polystyrene nanocomposites with different contents of MCM-50……………………………………………………61
Table 4-15 氧指數和燃燒關係…………………………………………63
Table 4-16 Average Molecular and Polydispersities of PS obtained from composite Extracts(Aluminophoshate lamellar )…………64
Table 4-17 Average Molecular and Polydispersities of PS obtained from composite Extracts (MCM-50)……………………………64
Table 4-18 Thermal decomposition temperatures of PS nanocomposites with different contents of lamellar Aluminophoshate……78
Table 4-19 FT-IR Assignment for PS and Lameller……………………78
Table 4-20 Contents of aluminophosphate in polystyrene nanocomposite and interlayer distance………………………………………80
Table 4-21 LOI of PI with various aluminophosphate contents………80
參考文獻
1.S.Komarnei, J. Mater. Chem., 1992, 2 , 1219.
2.E. P. Giannelis, Adv. Mater. , 1996, 8, 29.
3.J. Wen, G. L. Wilkes, Chem. Mater. , 1996, 8, 1667.
4.D. Y. Godovski, Adv. Polym. Sci, 1995, 119, 79.
5.B. M. Novak, Adv. Mater. , 1993, 5, 422.
6.A. Akelah, A. Moet, J. App. Polym. Sci.:App Polym. Sym., 1994, 55, 153.
7.C. Zilg, R. Thomann, R. Miilhaupt, J. Finder, Adv. Mater. , 1999, 11, 49.
8.P. C. LeBaron, Z. Wang, T. J. Pinnavaia, Applied Clay Sci., 1999, 15, 13.
9.K. Yano, A. Usuki, A. Okada, J. Polym. Sci: part A: Polym. Chem, 1997, 35. 2289.
10.T. Lan, T. J. Pinnavaia, Chem. Mater. , 1994, 6, 2216.
11.P. B. Messersmith, E. P. Giannelis, Chem. Mater. , 1994, 6, 1719.
12.M. S. Wang and T. J. Pinnavaia, Chem. Mater. , 1994, 6, 468.
13.K. E. Gonsalves, X. Chen, M. I. Baraton, Nanostruc. Mater. , 1997, 9, 181.
14.R. E. Southward, D. S. Thompson, T. A. Thoronton, et.al. , Chem, Mater. , 1998, 10, 486.
15.L. Yu, W. Q. Pang, Acta Chimica Sinica, 1991, 49, 1050.
16.R. H. Jones, A. K. Cheetham, S. Natarajan and J. M. Thomas, J. Polym. Soc., Chem. Commun. , 1994, 565.
17.J. M. Thomas, R. H. Jones, R. Xu, A. M. Chippindale, S. Natarajan and A. K. Cheetham, J. Polym. Soc., Chem.Commun. , 1992, 929.
18.A. M. Chippindale, A. V. Powell, L. M. Bull, R. H. Jones, A. K. Cheetham, J. M. Thomas, R. Xu, J. Solid State Chem., 1992, 96, 119.
19.A. Sayari, I. Moudrakovski, J. S. Reddy, Chem. Mater. , 1996, 8, 2080.
20.T. Kimura, Y. Sugahara, K. Kuroda, Chem. Mater. , 1999, 11, 508.
21.J. M. Serratosa, J. A. Ruasell-Colom and J. Sanz, J. Mole. Catal. 1984, 27, 225.
22.G. Alberti and U. Costantino, J. Mole. Catal. 1984, 27, 235.
23.R. Setton, J. Mole. Catal. 1984, 27, 263.
24.T. A. Pecoraro, R. R. Chianelli, J. Catal. , 1981, 67, 430.
25.M. Ree, K. Kim, S. H. Woo, H. Chang, J. App. Phys., 81, 698.
26.K. Yano, A. Usuki, A. Okada, T. Kurauchi, and O. Kamigato, J. Polym. Sci.:part A:Polym. Chem., 1993, 31, 2493.
27.T. Lan, P. D. Kaviratna, T. J. Pinnavaia, Chem. Mater.1994, 6, 573.
28.H. -L Tyan, Y. -C. Liu, K. –H. Wei, Chem. Mater. 1999, 11, 1942.
29.Y. Yang, Z.-K Zhu, J. Yin, X. -Y Wang, Z.-E Qi, Polymer, 1999, 40, 4407.
30.Z. -K. Zhu, Y. Yang, J. Yin, X. -Y. Wang, Y. -C. Ke, Z. -N. Qi, J. App. Polym. Sci., 1999, 73, 2063.
31.H. -L. Tyan, Y. –C. Liu, K. –H. Wei, Polymer, 1999, 40, 4877.
32.H. -L. Tyan, K. -H. Wei, T. -E Hsueh, J. Polym. Sci.:Part B:Polymer Physics, 2000, 38, 2873.
33.K. A. Carrado, L. Xu, Chem. Mater. , 1998, 10,1440.
34.H. -L. Tyan, K. -H. Wei, T. -E. Hsien, J. Polym. Sci.:part B:Polym. Phys., 2000, 38, 2873.
35.T. Agag, T. Koga, T. Takeichi, Polymer, 2001, 42, 3399.
36.P. Armitage, J. R. Ebdon, B. J. Hunt, M. S. Jones, F. G. Thprpe, Polymer Degradution and Stability, 1996, 54, 387.
37.Y. Chan, J.O. Iroh, Chem. Mater. , 1999, 11,1218.
38.R. Magaraphan, W. Lilayuthalert, A. Sirivat, Johannes W. Schwank, Composites Science and Technology, 2001, 61, 1255.
39.A. Gu, F. -C. Chang, J. App. Polym. Sci., 2001, 79, 289.
40.A. Gu, S. -W. Kuo, F. -C. Chang, J. App. Polym. Sci., 2001, 79, 1902.
41.R. A. Vaia, H. Ishii, E. P. Giannelis, Chem. Mater. , 1993, 5,1694.
42.R. A. Vaia, K. D. Jandt, E. J. Kramer, E. P. Giannelis, Macromolecules, 1995, 28, 8080.
43.M. Sikka, L. N. Cerini, S. S. Ghosh, K. I. Winey, J. Polym. Sci.:part B:Polym. Phys., 1996, 34, 1443.
44.J. G. Doh, I. Cho, Polymer Bulletin, 1998, 41, 511.
45.M. W. Noh, D. C. Lee, Polymer Bulletin, 1999, 42, 619.
46.N. Hasegawa, H. Okamoto, M. Kawasumi, A. Usuki, J. App. Polym. Sci., 1999, 74, 3359.
47.X. Fu, S. Qutubddin, Polymer, 2001, 42,807.
48.X. Fu, S. Qutubddin, Materials Letters, 2000, 42, 12.
49.M. Okamoto, S. Morita, H. Taguchi, Y. H. Kim, T. Kotaka, H. Tateyama, Polymer, 2000, 41, 3887.
50.C. Zeng, L. J. Lee, Macromolecules, 2001, 34, 4099.
51.J. T. Yoon, W. H. Jo, M. S. Lee, M. B. Ko, Polymer, 2001, 42, 329.
52.H. -D. Wu, C. -R. Tseng, F. -C. Chang, Macromolecules, 2001, 34, 2992.
53.H. Ishida, S. T. Wellinghoff, E. Baer, J. L. Koegnig, Macromolecules, 1980, 13, 826.
54.C. A. Pryde, J. Polym. Sci.:part A:Polym. Chem., 1989, 27, 711.
55.C. A. Pryde, J. Polym. Sci.:part A:Polym. Chem., 1993, 31, 1045.
56.C.-F Chang, H. He, J. Klinowski, J.Chem. Soc.Faraday Trans., 1995, 91,3995.
57.李佳晉碩士論文,2001.
電子全文 電子全文(本篇電子全文限研究生所屬學校校內系統及IP範圍內開放)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top