跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.80) 您好!臺灣時間:2024/12/12 18:38
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:解義弘
研究生(外文):Yi-Hung Shie
論文名稱:論Marshall對四則運算應用問題作分類的發現-一個隱性建議使用規則的實驗
論文名稱(外文):Marshall Revisited – A study of the effects of logical analytical abilities on classification abilities
指導教授:夏延德夏延德引用關係
指導教授(外文):Yen-Teh Hsia
學位類別:碩士
校院名稱:中原大學
系所名稱:資訊工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2003
畢業學年度:91
語文別:中文
論文頁數:47
中文關鍵詞:應用問題概念學習思考能力分類
外文關鍵詞:classificationtemplateelementary word problemlogical way of thinking
相關次數:
  • 被引用被引用:2
  • 點閱點閱:186
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
針對數學問題加以類型化或是其餘分類方式,不論是以情境、運算等模式來分類,都是透過已歸納好的題目類型,輔助學習者在嘗試解題的過程中,利用同類概念的解題方式,培養學習者將數學概念轉化成解題的能力,但學習數學是無法靠記憶來死背,當學習者的認知被固定類型的題目所箝制,不能達到真正的理解、有意義的學習。

換句話說,學習不僅是概念的改變更應是認知結構的改變。學習者會在認知發展的階段來建構個體有組織的抽象概念架構,靠同化(assimilation)及調適(accommodation)兩個互補的歷程,獲得概念架構上的改變;所以,學習者必定根據某些原理、概念或者是事實等來組織學習者的知識,所以如果能事先對這些原理、概念或者是事實給予某種歸類再給學習者建構,學習者是否因環境所給予的開放性架構而獲得高層次的思考呢?

本論文主要是針對國小文字應用題目提出靈活的題目解題方式,設計基本的題型方面訓練,通過這些基礎訓練,能進一步鞏固基礎訓練的效果,將所學的數學基礎知識逐步轉化成綜合運用的能力,並針對題目提供一些數學上的概念及規則去引導學生瞭解、熟悉每個題型的特點,強化分類練習,使其對概念點能夠觸類旁通,鞏固、彌補了基礎訓練中的知識,而在進階的分類練習中,在不斷地"認識---實踐---再認識---再實踐"的解題過程中,使學習者對題型由感性認識上升到理性認識,發現概念間關聯性,組織學習者的概念架構,理解問題,以彈性應用知識成功地解題,並建立對數學能力有用的知識類型。
Past research on 「classifications of elementary word problems」 has an important finding. Subjects generally classify problems according to the underlying arithmetic operations (addition, subtraction, multiplication, division). One exception to this is when the subjects are elementary students that have poor math scores, in which case the subjects would classify word problems by their respective contexts. It may be possible (as Marshall demonstrated) to train subjects how to do the “right” classification. However, from the perspectives of constructivism-style learning, we do not consider trainings of this kind meaningful, because what is of importance is how the subjects make classifications themselves and not how we can teach them “the right classification method”.

Learning is a complex mental activity. It not only involves changes in concepts, but also involves admissible changes in cognitive structures. Supposedly, this is all accomplished through assimilation and accommodation. But whether it is assimilation or accommodation, the ability of making classifications obviously play an important role in it. Just how a learner classifies things? He/she must be doing it according to some principles that he/she considers “useful” or important. If we can somehow influence the subjects in his/her choices of such principles, wouldn’t it affect his/her classification behavior?

With that in mind, we did an experiment on classifications of elementary word problems. The subjects were forty primary school students, ranging from the fourth grade through the sixth grade. First, we obtained their original classifications of twenty word problems in the pretest. Then, we suggested to these students (via training) how different wordings may be “translated into” various logical sentences (there are nine logical sentences altogether). After the training, we asked the students to classify the same set of word problems again in the posttest. The results are somewhat interesting. In general, the “good” students still classify the word problems according to the underlying arithmetic operations (i.e., there is no change in their classification behavior). However, there are subtle changes in their classification behaviors when the word problem in question is actually more complex than what they originally had thought. We attribute this “recognition of the inherent problem complexity” to the effect of the training (in logical way of thinking). Another interesting result is that the “bad” students changed their classification behavior after the training. Originally, these students classified the word problems according to their respective contexts (a finding that is consistent with previous research). But after the training (in logical way of thinking), these students started to classify the problems according to the underlying arithmetic operations.
目錄
第一章 導論
1-1 研究背景
1-2 研究目的
1-3 論文章節介紹
第二章 相關文獻探討
2-1 「分類」的思維
2-2 文字應用問題分類方式
2-3 概念與符號
2-4 概念呈現的方式
2-5 對研究的啟示
第三章 系統理念設計及分析
3-1 系統理論
3-2 RULE的定義
3-3 教具介面
3-3-1 基礎教具
3-3-2 進階教具
3-3-3 教學策略
3-3-4 演算法則
第四章 系統發展簡介
4-1 系統進行方式
4-2 系統架構
4-2-1 系統規格
4-2-2 系統模組
4-2-3 教學模組
4-2-3-1 教學元件目的
第五章 實驗設計與結果
5-1 研究限制
5-2 資料分析
第六章 系統評估與未來展望
6-1 檢討與評估
6-2 發展方向
參考文獻
附錄A.

圖表目錄

表2.1 Marshall文字題分類示意表
表2.2本表摘錄自Marshall,1995 Schemas in problem solving
表2.3 Riley文字題分類示意表
圖2.4 概念與數學問題
表2.5 學童圖形概念表
圖2.6 本圖修改自Asha Jitendra (2002)

圖3.1 DB狀態示意圖
圖3.2 Hint輔助示意圖
圖3.3 基礎教具介面
圖3.4 進階教具介面
圖3.5 Rule Map示意圖

圖4.1 修改自古光耀(2002),系統進行流程圖
圖4.2 遊戲中的大地圖介面
圖4.3 系統網路架構圖
圖4.4 系統規格圖
圖4.5 系統模組圖
圖4.6 系統教學模組圖
圖4.7 Algebra Module , AlgebraEquation Module ,Fraction Module,Trivial Module

表5.1 分類方式統計表

圖6.1 擬題簡略流程圖
圖6.2 分類分佈圖(a)
圖6.2 分類分佈圖(b)
中文部分:

[1]毛連塭 & 陳龍安 & 林幸台(2000),創造力研究,心理出版社。

[2]皮亞傑、英海爾德(1980),兒童心理學。

[3]古光耀 (2002):一個作加法補助教學的適性學習系統(私立中原
大學)。

[4]伯魯迪(2000),兒童的數學思考,桂冠前瞻教育叢書編譯組。

[5]林碧珍 (1988):國小學生數學解題的表現及其相關因素之研究(國立臺灣師範大學)。

[6]林嘉玲 (2000):數學遊戲融入建構教學之協同行動研究。

[7]林佳穎 (2002):控制解題環境以激發和測量學生對於簡單基模的建立與應用(私立中原大學)。

[8]洪英伸 (2001):一個將小學加減法與網路遊戲結合的CAL環境(私立中原大學)。

[9]馬秀蘭 (2001):透過電腦網路來發展數學加減法問題之研究(嶺
東技術學院)。

[10]葉千綺 (2000):電腦在測驗領域的發展與應用。

[11]單維彰 (2001):一個物件導向的數學概念學習與診斷工具(國立
中央大學)。

[12]梁淑坤:「擬題」的研究及其在課程的角色 (國立嘉義師範學院)。
(http://www.iest.edu.tw/study/math/newmath1/c12.htm)

[13]許淑萍 (2002):國小學生乘除法表徵能力與後設認知相關之研
究(國立台中師範學院)。

[14]蕭毓秀 (2000):國小學生時間文字題解題研究(國立台北師範學
院)。

英文部分:

[15]Asha Jitendra (2002). Teaching Students Math Problem-Solving Through Graphic Representations.

[16]Cloer, T . (1981). ”Factors affecting comprehension of math word problems. A review of research. ”(ERIC document 290-655)

[17]Cunningham, J.W., & Ballew, H.(1983).Solving word problem solving.The Reading Teacher, 36(8) 836-839.

[18]E.D. Gagne & C. W. Yekovich (1998). The Cognitive
psychology of School Learning.

[19]Fennema (1993). Using children's mathematical knowledge in
instruction.

[20]Jean-Francois Morin & Ruddy Lelouche . Agent-oriented
tutoring knowledge modelling in a problem-solving ITS.

[21]Marcee M. Steele.Discover: An Intelligent Tutoring System for teaching students with learning difficulties to solve word problems.Jl. of Computers in Mathematics and Science Teaching (1999) 18(4),351~359.

[22]Papert, S.(1996). The connected family. Atlanta: Longstreet Publishing.
( http://www.connectedfamily.com/main_alt.html)

[23]Pearla Nesher (2001) .Semantic Nets for Solving Word
Problems(SPA – A computerized scheme-based environment )

[24]Reder, L.M.(1982). When do they help and when do they hurt?

[25]Riley , M. S. & Grenno , J. G. & Heller, J. I. (1983).
Development of children’s problem –solving ability in arithmatic . In H .P . Ginsburg (Ed.)

[21]Robinson, C.S , & Hayes, J.R.(1978). Making inferences about relevance in understanding problems.

[27]Sandra P. Marshall (1995) .Schemas in problem solving.

[28]Silver,E.A. (1981). Recall of mathematical problem information:Solving related problems.Journal for Research in Mathematics Education ,12,54-64.

[29]Silver,E.A. (1997). Fostering creativity through instruction rich in mathematical problem solving and problem posing.

[30]Sinan Olkum & Zulbiye Toluk .Textbooks, Word Problems, and Student Success on Addition and Substraction.

[31]Sweller, J. & Cooper, G.A. (1985).”The use of examples as a substitude for problem solving in learning algerbra.”
Cognition and Instruction,2,59-89.

[32]Tang-HoLe & Gilles Gauthier & Claude Frasson . The process of planning for an intelligent tutoring system

[33]Yen-Teh Hsia .Curricular Automata and their Applications (2002).
電子全文 電子全文(本篇電子全文限研究生所屬學校校內系統及IP範圍內開放)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top