跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.84) 您好!臺灣時間:2024/12/08 19:59
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:劉時誌
研究生(外文):Shi-Zhi Liu
論文名稱:具備規則分析技術之高速模糊推論處理器設計
論文名稱(外文):A High Speed Fuzzy Inference Processor with the Capability of Rule Analyzing
指導教授:黃世旭黃世旭引用關係
指導教授(外文):Shih-Hsu Huang
學位類別:碩士
校院名稱:中原大學
系所名稱:電子工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2003
畢業學年度:91
語文別:中文
論文頁數:91
中文關鍵詞:模糊規則歸屬函數模糊推論處理器管線式架構
外文關鍵詞:Membership FunctionFuzzy Rule.Fuzzy Inference ProcessorPipelined Architecture
相關次數:
  • 被引用被引用:0
  • 點閱點閱:186
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
模糊邏輯理論最早是由Zadeh所提出。其所提出的模糊集合主要觀念是將人類的經驗法則轉化為模糊推論所使用的模糊規則,並以數學函數將其歸屬度量化來進行推論。
在本篇論文中,我們提出一個適合類梯形歸屬函數之高速模糊推論處理器。我們所提出的模糊推論處理器,最大的特色是在模糊推論前,先行分析輸入變數與模糊規則庫的關係。因此能夠及早找出與輸入變數有所交集的歸屬函數,並且去除與模糊推論結果無貢獻的規則。由於只有與輸入變數有交集的歸屬函數所組成的模糊規則才會拿來作模糊推論,因此可以大幅節省推論時間。
我們使用CIC所提供的0.35μm標準元件庫,來實現此模糊推論處理器。經由時序分析結果可知其工作頻率達190MHz,推論速度最快可達23.7MFLIPS (Mega Fuzzy Logic Inferences Per Second)。與其他架構比較,我們所提出的架構之適用性及推論速度都有很好的表現。
The theorem of fuzzy logic was presented from Zadeh at the earliest. The main concept of the fuzzy set proposed by Zadeh is to convert the experience rule of human being into the fuzzy set of the fuzzy inference and quantify its membership by mathematical.
We proposed a high-speed fuzzy inference processor suitable for the trapezoid-shaped membership function in this paper. The most outstanding characteristic of the proposed fuzzy inference processor is that we analyze the relationship between input variables and fuzzy rules first. So that we can find the membership functions that overlaps the input variables as soon as possible. And ignore the fuzzy rules those are not contributed to the result of the fuzzy inference. We can slash inference time by a wide margin because there are only fuzzy rules composed of the membership functions that overlap the input variable can we use to proceeding fuzzy inference.
We use 0.35μm standard cell library presented by CIC to implement the fuzzy inference processor. We can know its working frequency reaches to 190MHz and its inference velocity is up to 23.7MFLIPS (Mega Fuzzy Logic Inferences Per Second) through the result of timing analysis. Compared with other architecture, the suitability and inference velocity of the architecture proposed in this paper exhibit quite well.
目錄

誌謝 I
摘要 II
ABSTACT III
目錄 V
圖索引 VIII
表索引 XI
第一章 序論 1
1.1 研究背景 1
1.2 研究動機與目的 1
1.3 全文架構 4
第二章 模糊邏輯理論與模糊推論處理器 5
2.1 模糊邏輯 5
2.2 模糊推論運算 7
2.3 模糊推論處理器 10
2.4 文獻回顧 12
第三章 具備規則分析技術之高速模糊推論處理器設計 19
3.1 設計動機 19
3.2 模糊規則庫 23
3.3 管線式系統架構 25
3.3.1 判斷單元 26
3.3.2 排序單元 29
3.3.3 讀取模糊規則單元 34
3.3.4 模糊解碼單元 36
3.3.5 模糊判斷單元 45
3.3.6 最大值單元 49
3.3.7 解模糊化單元 52
第四章 實驗結果 58
4.1 模糊推論處理器效能分析及比較 58
4.2 模糊推論處理器應用模擬 64
4.2.1 倒車入庫系統 64
4-2-2 車載平衡桿系統 67
第五章 結論 70
參考文獻 71
附錄A 口試委員問答 76


圖索引

圖1-1 模糊推論處理器 2
圖1-2 類梯形歸屬函數表示法 3
圖2-1 一個歸屬函數範例 6
圖2-2 模糊推論運算 8
圖2-3 模糊推論運算範例 10
圖2-4 文獻[17]所推薦之類梯形歸屬函數表示法 12
圖2-5 歸屬函數與輸入變數的關係圖:(A)明確值輸入;(B)模糊輸入 14
圖3-1 模糊輸入變數與歸屬函數交集範例 22
圖3-2 歸屬函數 23
圖3-3 提出的模糊推論處理器架構 25
圖3-4 二元搜尋法 26
圖3-5 利用二元搜尋法來搜尋與輸入變數X有交集的起始歸屬函數位址 27
圖3-6 排序單元 30
圖3-7 最大-最小值運算所有可能狀況分析 38
圖3-8 交點計算 40
圖3-9 最大-最小值計算單元 41
圖3-10 模糊解碼單元 42
圖3-11 模糊判斷邏輯 46
圖3-12 模糊判斷單元 48
圖3-13 模糊判斷運算範例 49
圖3-14 最大值單元 50
圖3-15 解模糊化單元 54
圖3-16 解模糊化範例 57
圖4-1 晶片佈局圖 59
圖4-2 文獻[7]所使用的歸屬函數 60
圖4-3 文獻[26]所使用的歸屬函數 61
圖4-4 文獻[27]所使用的歸屬函數 61
圖4-5 文獻[28]所使用的歸屬函數 62
圖4-6 文獻[20]所提出之演算法調整後的非線性控制系統歸屬函數 62
圖4-7 倒車入庫系統示意圖 64
圖4-8 倒車入庫系統使用之歸屬函數 65
圖4-9 MATLAB模擬倒車入庫系統之控制平面 66
圖4-10 VERILOG-XL模擬倒車入庫系統之控制平面 66
圖4-11 車載平衡桿系統示意圖 67
圖4-12 車載平衡桿系統使用之歸屬函數 68
圖4-13 MATLAB模擬車載平衡桿系統之控制平面 69
圖4-14 VERILOG-XL模擬車載平衡桿系統之控制平面 69
圖A-1 倒車入庫系統路徑示意圖 79



表索引

表3-1 模糊規則庫前項部分範例 24
表3-2 與輸入變數X對應的歸屬函數範例 28
表3-3 排序單元動作機制範例 33
表3-4 模糊規則庫範例 36
表3-5 最大值單元運算運算範例 51
表4-1 有貢獻之模糊規則數與模糊推論處理器之推論速度關係表 59
表4-2 模糊推論處理器比較表 63
表4-3 倒車入庫使用之模糊規則庫 65
表4-4 車載平衡桿系統使用之模糊規則庫 68
參考文獻

[1] L.A. Zadeh, “Fuzzy sets,” Inf. Control, vol.8, pp. 338--351, 1965.
[2] L. I. Larkin, “A Fuzzy Logic Controller for Aircraft Flight Control”, Industrial Applications of Fuzzy Control, M. Sugeno. Ed. Amsterdam: North Holland, pp. 87--103, 1985.
[3] Shouping Guan, Han-Xiong Li and Tso, S.K, “Multivariable Fuzzy Supervisory Control for The Laminar Cooling Process of Hot Rolled Slab”, IEEE Trans. on Control Systems Technology, vol. 9, pp. 348--356, 2001.
[4] D. Sinha, P. Sinha, E. R. Dougherty and S. Batmen, “Design and Analysis on Fuzzy Morphological Algorithms for Image Processing”, IEEE Trans. on Fuzzy Systems, pp. 570--584, 1997.
[5] Barra, V. and Boire, J.Y., “Automatic segmentation of subcortical brain structures in MR images using information fusion”, IEEE Trans. on Medical Imaging, vol. 20, pp. 549--558, 2001.
[6] Kuang-Yow Lian, Chian-Song Chiu, Tung-Sheng Chiang, and Peter Liu, “LMI-Based Fuzzy Chaotic Synchronization and Communications”, IEEE Trans. on Fuzzy Systems, vol. 9, pp. 539--553, 2001.
[7] B.D. Liu, C.Y. Chen and J.Y. Tsao, “Design of Adaptive Fuzzy Logic Controller Based on Linguistic-Hedge Concepts and Genetic Algorithms”, IEEE Trans. on System, Man and Cybernetics, vol. 31, pp. 32--53, 2001.
[8] C. W. Tao and J. S. Taur, “Design of Fuzzy-Learning Fuzzy Controllers”, in the Proc. of IEEE International Conference on Fuzzy Systems, vol. 1, pp. 416--421, 1998.
[9] H. Watanabe, J.R. Symon, W.D. Detloff & K.E. Yount, “VLSI fuzzy chip and inference accelerator board system”, Fuzzy Logic for Management of Uncertainty, John Wiley & sons, Inc., 1992.
[10] K. Nakamura, N. Sakashita, N. Nitta, K. Shimomura & T. Tokuda, “Fuzzy Inference and Fuzzy inference Processor”, IEEE Micro, vol. 13, pp.37--48, 1993.
[11] G. Ascia, V. Catania, “A VLSI Parallel Architecture for Fuzzy Expert Systems”, Int. Journ. Of Patt. Rec. and Art. Int., vol. 5, 1995.
[12] G. Ascia, V. Catania M.Russo, L. Vita, “A Rule Driven Architecture for a VLSI Fuzzy Processor”, IEEE Micro, vol. 16, 1996.
[13] H. Wang, K. Tanaka, and M. Griffin, “Parallel distributed compensation of nonlinear systems by Takagi and Sugeno’s fuzzy model,” in Proc. FUZZ-IEEE’95, Yokohama, Japan, pp. 531--538, 1995.
[14] M.Togai and H. Watanabe, “Expert system on a chip: An engine for real-time approximate reasoning”, IEEE Expert Magazine, vol. 1, pp. 55--62, 1986.
[15] M. Togai and S. Chiu, “A Fuzzy Logic Chip and Fuzzy Inference Accelerator for Real–Time Approximate Reasoning”, Proc. Of 17th. International Symposium of Multiple Valued Logic, pp. 25--29, 1987.
[16] T. Katashiro, “A Fuzzy Microprocessor for Real-time Control Applications”, Proc fifth IFSA World Congress 1993, Seul , pp. 1394--1397.
[17] S.H. Huang and J.Y. Lai, “An Efficient Membership Function Representation For High-Resolution Fuzzy Systems”, in the Chung Yuan Journal, vol. 29, pp. 285--291,2001.
[18] S.H. Huang and J.Y. Lai, “A High Speed VLSI Fuzzy Logic Controller with Pipeline Architecture”, in the Proc. of IEEE International Conference on Fuzzy Systems, vol. 3, pp. 8--11, 2001.
[19] S.H. Huang and J.Y. Lai, “A High-Speed Fuzzy Inference Processor with Dynamic Scheduling Capability”, in the Proc. of IEEE International Symposium on Intelligent Signal Processing and Communication Systems, pp. 297--301, 2002.
[20] S.H. Huang and W.H. Peng and J.Y. Lai, “Automatic Synthesis of Fuzzy Systems Based on Trapezoid-Shaped Membership Functions”, accepted by IEEE Asia-Pacific Conference on Circuits and Systems 2002.
[21] H. Watanabe, W.D. Dettloff, and K. E. Yount, “A VLSI fuzzy logic controller with reconfigurable, cascadable architecture”, IEEE J. Solid-State Circuits, vol. 25, pp. 376--381, 1990.
[22] J.M. Jou, P.-Y. Chen, “An adaptive fuzzy logic controller: Its VLSI architecture and applications”, in IEEE trans. VLSI systems, vol. 8, pp 52-60, 2000.
[23] T.C. Chiueh, “Optimization of fuzzy logic inference architecture”, Computer, pp. 67--71, 1992.
[24] H. Eichfeld, M. Lohner, and M. Muller, “Architecture of a CMOS fuzzy logic controller with optimized memory organization and operator design”, in the Proc. of IEEE Int. Conf. on Fuzzy Systems, pp.1317--1323, 1992.
[25] G. Ascia, V. Catania , “A dedicated parallel processor for fuzzy computation”, in Proceedings of the Sixth IEEE International Conference, vol. 2, pp. 787--792, 1997.
[26] D.V. Cleave and K.S. Rattan, “Tuning of fuzzy logic controller using neural network”, in the Proc. of National Aerospace and Electronics Conference, pp. 305--312, 2000.
[27] V. Kunsriraksakul, B. Homnan and W. Benjapolakul, “Comparative evaluation of fixed and adaptive soft handoff parameters using fuzzy inference systems in CDMA mobile communication systems”, in the Proc. of IEEE International Conference on Vehicular Technology, vol. 2, pp. 1017--1021, 2001.
[28] Z. Hanqi and Wu. Xiaomin, “Membership function modification of fuzzy logic controllers with histogram equalization”, IEEE Trans. on Systems, Man and Cybernetics, vol. 31, pp. 125--132, 2001.
[29] M. Jacomet and R.Walti, “A VLSI Fuzzy Processor with Parallel Rule Execution”, 5th IEEE International Conference on Fuzzy systems, vol. 1, pp. 554--558, 1996.
[30] G. Ascia, V. Catania, D. Panno, G. Ficili, and S. Palazzo, “A VLSI Fuzzy Expert System for Real-Time Traffic Control in ATM Networks”, IEEE Trans. on Fuzzy Systems, vol. 5, pp. 20--31, 1997.
[31] R. Yager, “An Alternative Approach for the Calculation of Fuzzy Logic Control Values”, Japan Society Fuzzy Technology, 1993.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top