|
Reference [1]M. Murakami, Development of ohmic contact materials for GaAs integrated circuits, Mater. Sci. Rep. 5(1990)273-317. [2]V.L. Rideout, A review of the theory and technology for ohmic contacts to group III-V compound semiconductors, Solid-State Electron. 18(1975)541-550. [3]S.M. Sze, Physics of Semiconductor Devices, 2nd Ed., John Wiley & Sons, New York, 1981, Chap.5. [4]C. Wilmsen, Physics and Chemistry of III-V Compound Semiconductor Interfaces, Plenum press, New York, 1985, p.129. [5]E.H. Rhoderick, Metal-Semiconductor Contacts, Clarendon Press, Oxford, 1978 p.14. [6]A.Y.C. Yu, Electron tunneling and contact resistance of metal-silicon contact barriers, Solid-State Electron. 14(1971)239-247. [7]C.Y. Chang, Y.K. Fang, S.M. Sze, Specific contact resistance of metal-semiconductor barriers, Solid-state Electron. 14(1971)541-550. [8]B.L. Sharma, in: R.K. Willardson, A.C. Beer(Eds.), Semiconductors and Semimetals, vol. 15, Academic Press, New York, 1981, p.1. [9]G.Y. Robinson, in: C.W. Wilmawn(Ed.), Physics and Chemistry of III-V Compound Semiconductor Interfaces, Plenum Press, New York, 1985, p.73. [10]S.M. Sez, Physics of Semiconductor Devices, Wiley, New York, 1981 p.245. [11]F. Pandovani, R. Stratton, Solid-State Electron. 9(1966)695. [12]C.R. Crowell, V.L. Rideout, Normalized thermionic-field(T-F)emission in metal-semiconductor(Schottky)barriers, Solid-State Electron. 12(1969)89-105. [13]R. Stratton,F.A. Padovani, Solid-State Electron. 10(1967)813. [14]W.E. Spicer, I. Lindau, P. Skeath, C.Y. Su, P. Chye, Unified mechanism for Schottky-barrier formation and III-V oxide interface states, Phys. Rev. Lett. 44(1980)420-423. [15]C.A. Mead, W.G. Spitzer, Fermi level position at metal-semiconductor interfaces, Phys. Rev. 134(1964)A713-A716. [16]C.R. Crowell, J.C. Sarace, S.M. Sze, Trans. Metal. Soc. AIME 233(1965)478. [17]J.R. Waldrop, Schottky-barrier height of ideal metal contacts to GaAs, Appl. Phys. Lett 44(1984)1002-1004. [18]N. Newman, M. van Schilfgaarde, T. Kendelwicz, M.D. Williams, W.E. Spicer, Electrical study of Schottky barriers on atomically clean GaAs(110)surfaces, Phys. Rev. B 33(1986)1146-1159. [19]R.E. Viturro, S. Chang, J.L. Shaw, C. Maihiot, L. J. Brillson, A. Terrasi, Y. Hwu, G. Margaritondo, P.D. Kirchner, J.M. Woodall, Low-temperature formation of metal/molecular-beam epitaxy GaAs(100)interfaces: approaching ideal chemical and electronic limits, J. Vac. Sci. Technol., B 7(1989)1007-1012. [20]P.A. Barnes, A.Y. Cho, Nonalloyed ohmic contacts to n-GaAs by molecular beam epitaxy, Appl. Phys. Lett. 33(1978)651-653. [21]W.T. Tsang, In situ ohmic-contact formation to n-and p-GaAs by molecular beam epitaxy, Appl. Phys. Lett. 33(1978)1002-1025. [22]K. Shenai, Very low resistance nonalloyed ohmic contacts. To Sndoped molecular-beam epitaxial GaAs, IEEE Trans. Electron Devices ED-34(1987)1642-1649. [23]M. Laznicka, P. Trung Dung, J. Oswald, V. Vorlicek, I. Gregora, M. Simeckova, K. Jurek, P. Doubrava, Heavy doping with Sn of GaAs layers frown by molecular beam epitaxy for non-alloyed ohmic contacts, Czech. J. Phys. B 38(1988)224-230. [24]A.Y. Cho, Film deposition by molecular-beam techniques, J. Vac. Sci. Technol. 8(1971)S31-S38. [25]A.Y.Cho, Impurity profiles of GaAs epitaxial layers doped with Sn, Si, and Ge grown with molecular beam epitaxy, J. Appl. Aphys. 46(1975)1733-1735. [26]C.E.C. Wood, B. A. Joyce, Tin-doping effects in GaAs films grown by molecular beam epitaxy, J.Appl. Phys. 49(1978)4854-4861. [27]A.Y. Cho, I. Hayashi, Epitaxy of silicon doped gallium arsenide by molecular beam method, Metall. Trans. 2(1971)777. [28]T. Murotani, T. Shimanoe, S. Mitsui, Growth temperature dependence in molecular beam epitaxy of gallium arsenide, J. Cryst. Growth 45(1978)302-308. [29]Y.G. Chai, R. Chow, C.E.C. Wood, The effect of growth conditions on Si incorporation in molecular beam epitaxial GaAs, Appl. Phys. Lett. 39(1981)800-803. [30]P.D. Kirchner, T.N. Jackson, G.D. Pettit, J.M. Woodall, Low resistance nonalloyed ohmic contacts to Si-doped molecular beam epitaxial GaAs, Appl. Phys. Lett. 47(1985)26-28. [31]W. Shockley, “Research and investigation of inverse epitaxial UHF power transistors,” Report No. Al-TOR-64-207, Air Force Atomic Laboratory, Wright-Patterson Air Force Base, Ohio, September 1964. [32]W. Kellner, “Planar ohmic contacts to n-type GaAs: determination of contact parameters using the transmission line model,” Siemens Forsch. Entwickl-ber. Vol.4, p.137,1975. [33]I.F. Chang, “Contact resistance in diffused resistors,” J. Electrochem. Soc., vol. 117, p.368,1970. [34]E. Yamaguchi et al., “Ohmic contacts to Si-implanted InP,” Solid-State Electron., vol.24 p.263,1981. [35]H.B. Harrison, “Characterizing metal semiconductor ohmic contacts,” Proc. IREE Aust., vol.41,p.95, 1980.
[36]G.K. Recves, “Specific contact resistance using a circular transmission line model,” Solid-State Electron, vol. 23,p.487,1980. [37]H.H. Berger, “Contact resistance on diffused resistors,” IEEE ISSCC Proc, vol. 160, 1969. [38]Masaki Ogawa, “Alloy behavior of Ni/Au-Ge films on GaAs,” J.Appl.phys.51(1),January 1980. [39]Robinson, G. Y., in Physics and Chemistry of III-V Compound semiconductor Interfaces, ed. By C. W. Wilmsen, Plesen Press(1985) [40]R.E. William, in Gallium Arsenide Processing Techniques(Artech House, Massachusetts,1984), p.225-258. [41]Nancy E. Lumpkin, K. S. A. Butcher, Investigation of low-and high-resistance Au/Ge/Ni ohmic contacts to n-GaAs using electron microbeam and surface analytical techniques. [42]H.H. Berger, “Contact Resistance and Contact Resistivity.”, J. Electrochem. Soc., p.507-514(1972).
|