跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.89) 您好!臺灣時間:2024/12/10 00:22
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:黃聖閔
研究生(外文):Sheng-Min Huang
論文名稱:整合型表面聲波陣列感測器之研究
論文名稱(外文):The Study of SAW Integrated Array Sensors
指導教授:鄭湘原
指導教授(外文):Erik Jeng
學位類別:碩士
校院名稱:中原大學
系所名稱:電子工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2003
畢業學年度:91
語文別:英文
論文頁數:96
中文關鍵詞:壓電表面聲波元件
外文關鍵詞:SAW devicePiezoelectric
相關次數:
  • 被引用被引用:9
  • 點閱點閱:208
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
中文摘要

現今的表面聲波元件已被廣泛地應用在各通訊系統領域中,作為頻率選取與雜訊抑制的濾波器元件。運用表面聲波元件其聲波機制,感測出質量微量變化的特性也備受注意。而表面聲波元件表面上所塗佈之聚合薄膜可作為化學辨識感測器,並廣泛地運用在不同之有機氣體感測。
在本論文中我們利用雙埠表面聲波元件來製作皮爾斯型式的振盪器。其表面聲波元件之中心頻率及插入損耗分別為157MHz和-19.408dB。在製作完後的振盪器其震盪頻率與輸出功率分別為157.040MHz與17.56dBm,而其相位雜訊為-77.79dBc/Hz@100KHz。最後配合商用之混頻元件,完成整合型表面聲波感測器之製作與量測,而其輸出功率為2.38dBm@531KHz。
本論文感測實驗中,在表面聲波振盪器上塗佈聚亞烯胺和纖維醋酸酯薄膜來偵測相對溼度變化。此外,於表面聲波振盪器上塗佈聚乙烯亞胺、乙基纖維素、聚苯乙烯與三氟丙基-甲基聚矽化烷等四種薄膜量測甲酚、水、二氯乙烷、苯與酒精蒸氣其質量所造成之頻率變化。在實驗中所感測出之結果將在本文中作相關的討論。
Abstract

Surface acoustic wave (SAW) devices have been used as filters in modern communication systems. In addition, Quartz SAW device using surface acoustic wave modes have been the most extensively used in mass sensing devices. SAW devices coated with polymer as chemical sensors become popular in the detection of a variety of organic gases.
This thesis presents a Pierce-type oscillator using two-port SAW devices. The center frequency and the insertion loss of SAW device are 157MHz and –19.408dB respectively. The output frequency and power of oscillator using SAW device is 157.040MHz and 17.56dBm respectively, while its phase noise is -77.79dBc/Hz@100KHz. And the resulting power of SAW integration sensor after frequency differentiation is 2.38dBm@531KHz.
SAW ocillators with organic films using polyimide and cellulose acetate detect the variation of the relative humidity. In addition, SAW ocillators coated with the poly(ethylenimine), ethyl cellulose, polystyrene and OV210 films detect variations of frequency for sensing vapors of water, ethanol, benzene, m-cresol and dichloroethane. Results were obtained and discussed with SAW devices for the organic gas detection.
Contents
中文摘要.....................................................................I
Abstract....................................................................II
Acknowledgments.............................................................III
Contents....................................................................IV
Figure captions.............................................................VII
Table captions..............................................................IX

章節摘要
第一章 感測器之導論........................................................XI
第二章 感測系統之製作與量測...............................................XII
第三章 表面聲波溼度感測器................................................XIII
第四章 有機氣體化學感測器.................................................XIV
第五章 結論與未來工作......................................................XV
Chapter 1 Introduction to Sensors.............................................1
1-1 Definition of Sensors.....................................................1
1-2 Operation Principle of Sensors............................................3
1-3 Classifications of Sensors................................................4
1-4 Acoustic Sensors..........................................................5
1-4-1 Fundamentals of Acoustic Wave...........................................6
1-4-2 Piezoelectric Materials.................................................9
1-4-3 Surface Acoustic Wave (SAW)............................................11
1-4-4 Surface Acoustic Wave Sensing..........................................13
1-5 Organization of this Thesis.............................................14
Chapter 2 Device Fabrication and Circuit Design.............................16
2-1 SAW Devices.........................................................16
2-1-1 Design of the SAW Transducers.........................................17
2-1-2 Fabrication of SAW Devices............................................19
2-1-3 SAW Characterization..................................................22
2-1-4 SAW Device Package....................................................26
2-2 SAW Sensing Systems....................................................27
2-2-1 Design of Two-Port Oscillators.........................................27
2-2-2 Mixers Characteristics..............................................30
2-2-3 Sensor System Integration .............................................32
2-2-4 Fabrications and Measurements..........................................33
2-3 Conclusion.............................................................37
Chapter 3 SAW Humidity Sensors..............................................39
3-1 Introduction to Humidity Sensors.......................................39
3-2 Definition of Relative humidity........................................41
3-3 Classification of Humidity Sensors.....................................42
3-3-1 Ceramic Humidity Sensors...............................................42
3-3-2 Capacitance-type Humidity Sensors......................................44
3-3-3 Dew-Point Sensors......................................................46
3-4 SAW Humidity Sensors...................................................48
3-5 Experiments and Results................................................49
3-6 Conclusions............................................................52
Chapter 4 Organic Vapor Chemicals Sensors...................................54
4-1 Introduction to Gas Sensor.............................................54
4-2 Comparison of Acoustic sensors.........................................54
4-3 Experiment and Results.................................................58
4-3-1 Polymer Film Coating...................................................58
4-3-2 Experiment Setup.......................................................59
4-3-3 Result and Discussions.................................................61
4-4 Conclusions.........................................................70
Chapter 5 Conclusions and Future Works......................................73
5-1 Conclusions............................................................73
5-2 Future Works...........................................................74
Reference....................................................................75
Appendix.....................................................................79
VITA.........................................................................80

Figure captions

Figure 1-1. Physical dimensions which are converted into an electric signal.
Figure 1-2. Sensor principles. Schematic diagram of a sensor that produces an electrical output in response to the presence of an input quantity.
Figure 1-3. A general measurement system.
Figure 1-4. Schematic illustration of motions of groups of atoms shown in cross-sectional views of solids as plane elastic waves propagate to the right. (a) bulk longitudinal wave in unbounded solid; (b) bulk transverse wave in unbounded solid; (c) surface acoustic wave (SAW) in semi-infinite solid; (d) waves in thin solid plates (Lamb waves).
Figure 1-5. Transformation of mechanical energy into electrical energy.
Figure 1-6. Schematic representation of surface acoustic wave motion on the surface solid.
Figure 1-7. Schematic representation of surface acoustic wave motion on the surface solid.
Figure 1-8. Measurement methods for resonators and delay lines.
Figure 2-1. The basic scheme of IDT for a SAW filter.
Figure 2-2. The process flow diagram for SAW device.
Figure 2-3. The measurement of current leakage by using semiconductor parameter analyzer (HP4155C).
Figure 2-4. The simulation results of the PCB.
Figure 2-5. The diagram of soldered SAW device on the PCB.
Figure 2-6. Block diagram of a network analyzer measurement of two-port device.
Figure 2-7. The diagram of SAW device on the PCB.
Figure 2-8. The measurement of SAW device.
Figure 2-9. The commercial TO-series packages.
Figure 2-10. An oscillator model as the combination of an amplifier and a feedback loop.
Figure 2-11. Pierce oscillator working with SAW device.
Figure 2-12. The complete oscillator circuit.
Figure 2-13. The simulation of the oscillation condition and resonance frequency.
Figure 2-14. Conversion compression and intermodulation product of a mixer.
Figure 2-15. The diagram of SAW integration sensor.
Figure 2-16. SAW device with soldered PCBs.
Figure 2-17. The simulation and real measurement of SAW device (a) S11, (b) S21.
Figure 2-18. The scheme of measurement setup.
Figure 2-19. The measurement result of oscillation.
Figure 2-20. The circuit of the mixer.
Figure 2-21. The SAW integrated sensor circuit.
Figure 2-22. The intermediate frequency of integrated sensor circuit.
Figure 3-1. The schematic of alumina sensor.
Figure 3-2. The equivalent circuit of alumina sensor.
Figure 3-3. The schematic view of a colloidal Fe3O4 sensor.
Figure 3-4. The schematic drawing of a humidity sensor.
Figure 3-5. The structure of the integrated temperature humidity sensors (a) top view (b) cross sectional view at a-b.
Figure 3-6. The scheme of an MOS-type capacitive dew-point sensor.
Figure 3-7. The scheme of SAW sensors for relative humidity sensing in a commercial test chamber.
Figure 3-8. The long term drift of SAW oscillator.
Figure 3-9. The frequency shifts from 50%RH at 50oC of uncoated SAW oscillator.
Figure 3-10. The frequency shifts of SAW oscillator with polyimide coating.
Figure 3-11. The frequency shifts of SAW oscillator with cellulose acetate coating.
Figure 4-1. The schematic diagram of air spray.
Figure 4-2. The schematic diagram of organic vapor sensing system.
Figure 4-3. The diffusion tube of organic vapor sensing system.
Figure 4-4. Structure images of (a) poly(ethylenimine) (b) polystyrene (c) OV210 (d) ethyl cellulose.
Figure 4-5. The frequency variation that coated with polystyrene films for sensing (a) benzene vapors and poly(ethylenimine) films for sensing (b) water vapors.
Figure 4-6. omparison of (a) poly(ethylenimine) (b) polystyrene (c) OV210 (d) ethyl cellulose from radar chart.
Figure 4-7. Adsorption properties of the four polymer films (a) water (b) m-cresol (c) dichloroethane (d) ethanol (e) benzene.
Figure 4-8. Comparison of four-SAW-device sensor array response patterns for five chemical compounds. (a)ethanol (b)dichloroethane (c)water (d)benzene (e)m-cresol.
Figure 4-9. The concentration of ethanol versus the frequency shifts.
Figure 4-10. The summaried fingerprint of the adsorption for the four SAW sensors.

Table captions

Table 1-1. The various forms of energy from a physical point of view.
Table 1-2. Six types of input signal in the measurement system.
Table 2-1. The conditions of our design in mask.
Table 2-2. Oscillator performances
Table 2-3. Mixer performances
Table 3-1. Applications of Humidity Sensors
Table 4-1. Mass Sensitivities Sm of the main types of acoustic sensors.
Table 4-2. Qualitative Comparisons of Acoustic Sensors.
Table 4-3. The ratio of adsorption for four-SAW-device sensors.
Reference

[1] P. Hauptmann, Sensors Principles and Application, Prentice-Hall,
Englewood Cliffs, pp. 4-6, 1991.
[2] D. S. Ballantine, R.M. White, Acoustic Wave Sensors-Theory, Design,
and Physico-Chemical Applications, Academic Press, New York, pp. 1-3, 1997.
[3] M. J. Usher, Sensors and Transducers, McMillian, Hampshire, pp.4-6, 1985.
[4] W. GÖpel, J. Hesse, J. N. Zemel, Sensors: A Comprehensive Survery, VCH, New York, Vol.1, pp.5-7, 1989.

[5] J. W. Grate, S.J. Martin, and R. M. White, Acoustic Wave Microsensors, Anal. Chem., pp.940-948, 1993.
[6] R. M. White, Surface Elastic Waves, Proc. IEEE 58, pp.1238-1276, 1970.
[7] B. A. Alud, Acoustic Fields and Waves in Solids, Krieger ,Malabar, pp.13-18, 1990.
[8] R. M. White, Acoustic Sensors for Physical, Chemical and
Biochemical Application, IEEE, pp.587-594, 1998.
[9] K. Hashimoto, Surface Acoustic Wave Devices in Telecommunications, Springer, New York, pp.1-3, 2000.
[10] J. G. Gualtieri, J. A. Kosinski, and A. Ballato, Piezoelectric Materials for SAW Applications, Ultrasonics Symposium, Proceedings, IEEE, vol.1, pp.403-412,1992.
[11] J. W. Gardner, V. K. Varadan, O. O. Awadelkarim, Microsensors MEMS and Smart Devices, Wiley-interscience, New York, pp.303-306, 2001.
[12] C. Compbell, Surface Acoustic Wave Devices and Their Signal Processing Application, Academic Press, Inc., pp.1-12, 1989.
[13] C. K. Campbell, Surface Acoustic Wave Devices for Mobile and Wireless Communications, Academic Press, Inc., pp.533, 1998.
[14] P. Ciureanu and S. Middelhoek, Thin Film Resistive Sensors, Institute of Physics Pub, pp.113-119, 1992.
[15] M. Thompson and D. C. Stone, Surface-Launched Acoustic Wave Sensors, John Wiley & Son, Inc, pp.69-74 1997.
[16] H. R. Taylor, Data Acquisition for Sensor System, Chapman and Hall, New York, pp.39-45,1997.
[17] S. M. Sze, Semiconductor Sensors, Wiley-interscience, New York, pp.110, 1994.
[18] 吳至軒, 高品質氮化鋁薄膜及其表面聲波元件之研製, 中原大學碩士論文, 2001.
[19] P. V. Wright, A review of SAW resonator filter technology, Ultrasonics Symposium, vol. 1, pp. 29-38, 1992.
[20] 王聖銘, 中頻表面聲波濾波器之設計與量測, 台灣大學應用力學研究所碩士論文, 2002.
[21] K. Hohakawa, K, K. Koh, C. Kaneshiro, Y. Aoki, C. Hong, K. Komine, Fabrication process for semiconductor bonded SAW devices, Ultrasonics Symposium, Vol. 1, pp. 301-304, 1999.
[22] M. Fedmann, J. Hénaff, Surface Acoustic Waves and Signal Processing, ARTECH HOUSE, Boston and London, pp. 261-263, 1989.
[23] E. A. Ash , E. G. S. Paige, Rayleigh-Wave Theory and Application, Springer-Verlag, London, pp.60-65, 1985.
[24] David M. Pozar, Microwave Engineering, Wiley, Canada, pp.217-221, 1998.
[25] 許志威、楊士鋒, 高頻晶圓元件測量-網路分析儀之校正與運用, 半導體科技, pp.48-54, 2002.
[26] M. B. Janner, T. E. Kolding, Test Structures and Techniques for On-Wafer CMOS TRL Calibration, Proceeding of IEEE International Conference , pp.137-140, 2001.
[27] L. Ristic, Sensor Technology and Devices, ARTECH HOUSE, Boston and London, pp.220-224, 1994.
[28] Toshiba Components Company, Ltd. (TOSCOM), Japan, http://www.toshiba.co.jp/toscom/catalog/saw/saw.htm.
[29] A. S. Sedra, K. C. Smith, Microelectronic Circuits, Oxford, pp.974-975, 1998.
[30] 袁杰, 高頻電路分析與設計(二), pp.361 , 1997.
[31] B. RAZAVİ, RF Microelectronic, Prentice-Hall, pp.206, 1998.
[32] C. Bowick, RF Circuit Design, Sontheast, Indiana, pp.66, 1995.
[33] T. H. Lee, The Design of CMOS Radio-Frequency Integrated Circuits, Cambridge University Press, pp.385, 1998.
[34] R. Ludwig, P. Bretchko, RF Circuit Design-Theory and Application , Prentice-Hall, pp.574, 2000.
[35] H. Wohltjen, A. W. Snow, W. R. Barger, D. S. Ballantine, Trace Chemical Vapor Detection Using SAW Delay Line Oscillators , IEEE Transactions on Ultrasonic, pp.172-178, 1987.
[36] A. D’AMICO, E. VERONA, SAW Sensors, Sensors and Actuators, pp.55-66, 1989
[37] D. S. Ballantine Jr., H. Wohltjen, Devices for Chemical Analysis, Anal. Chem., pp.704-715, 1989
[38] T. Seiyama, N. Yamazoe, H. Arai, Ceramic Humidity Sensors, Sensors and Actuators, pp.85-96, 1983.
[39] D. K. Roveti, Choosing a Humidity sensors, Sensors Online, http://www.sensorsmag.com/articles/0701/54/.
[40] J. J. Carr, Sensors and Circuits, Prentice-Hall, Englewood Cliffs, pp.304-308,1993.
[41] T. Nitta, S. Hayakawa, Ceramic Humidity Sensors, IEEE Transactions on Components, Hybrids and Manufacturing Technology, Vol. CHMT-3, NO. 2, pp.237-243, 1980.
[42] N. Yamazoe, Y. Shimizu, Humidity Sensors: Principles and Application, Sensors and Actuators, pp.379-398, 1986.
[43] W. GÖpel, J. Hesse, J. N. Zemel, Sensors: A Comprehensive Survery, VCH, New York, Vol.3, pp.1005-1011, 1989.
[44] 盧明智、盧鵬任, 感測器應用與線路分析, pp.23-20 , 1996.
[45] K. Sager, A. Schroth, G. Gerlach, Humidity-Dependent Mechanical Properties of Polyimide Films and Their Use for IC-Compa Humidity Sensors, The 8th International Conference on Solide-State Sensors and Actuators, 1995.
[46] T. Nomura, K. Oofuchi, T. Yasuda, and S. Furukawa, SAW Humidity sensor using dielectric hygroscopic polymer film, IEEE Ultrasonics symposium, vol.1, pp. 503-506, 1994.
[47] D.W. Galipeau, J.F. Vetelino, C. Feger, Measurement of relative adhesion surface properties of polyimide films using a surface acoustic wave sensor, Sensors and Actuators B, vol. 13-14, P.432-436, 1993.
[48] U. Wollf, F. Dickert, G. K. Fischerauer, W. Greibl, and C. C. W. Ruppel, SAW sensors for harsh environments, IEEE Sensors Journal, vol.1, NO. 1, 2001
[49] E.R. Braga, A.Y. Nakano, Maurício P. da Cunha, A SAW resonator sensor system employed in humidity measurements, SBMO/IEEE MTT-S IMOC’99 Pro- ceedings, 342-345, 1999.
[50] M. Penza, V.I. Anisimkin, Surface Acoustic Wave Humidity Sensor using Polyvinvl-Alcohol Film, Sensors and Actuators A, 162-166, 1999.
[51] S. Goka, K. Okabe, Y. Watanabe and Sekimoto, Fundamental study on multi-mode quartz crystal gas sensors, Ultrasonics symposium, pp. 489-492, 1999.
[52] V. I. Anisimkin, M. Penza, S. A. Maksimov, L. Vasanelli, SAW delay lines for thermal detection of gases and gas flows, Ultrasonics symposium, pp. 481-484,1995.
[53] I. D. Avramov, M. Rapp, A. Voigt, U. Stahl, M. Dirschka, Comparative studies on polymer coated SAW and STW resonators for chemical gas sensor applications, International frequency control symposium and exhibition, pp. 58-65, 2000.
[54] S. W. Wenzel, R. M. White, Analytic comparison of the sensitivities of bulk-wave, surface-wave, and flexural plate-wave ultrasonic gravimetric sensors, Appl. Phys. Lett., pp. 1976-1978,1989.
[55] J. W. Grate, R. A. McGill, S. J. Martin, Acoustic Wave Microsensors, Anal. Chem. , pp. 940-948, 1993.
[56] E. T. Zellers, S. A. Batterman, M. Han, S. J. Patrash, Optimal Coating Selection for the Analysis of Organic Vapor Mixtures with Polymer-Coated Surface Acoustic Wave Sensor Arrarys, Anal. Chem., pp. 1092-1106, 1995.
[57] R. A. McGill, M. H. Abraham, J. W. Grate, Choosing polymer coatings for the chemical sensors, American Chemistry Society, pp. 27-37,1994.
[58] J. W. Grate, R. A. McGill, Dewetting Effects on Polymer-Coated Surface Acoustic Wave Vapor Sensors, Anal. Chem., pp. 4015-4019, 1995.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊