跳到主要內容

臺灣博碩士論文加值系統

(44.222.64.76) 您好!臺灣時間:2024/06/17 10:25
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林峰旭
研究生(外文):Feng-Shiu Lin
論文名稱:電源轉換器之積分型模糊控制器設計
論文名稱(外文):Integral Fuzzy Control and Application on Power Converters
指導教授:練光祐
指導教授(外文):Kuang-Yow Lian
學位類別:碩士
校院名稱:中原大學
系所名稱:電機工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2003
畢業學年度:91
語文別:英文
論文頁數:79
中文關鍵詞:隔離式主動功因校正電力轉換器升壓型電力轉換器強健性零穩態誤差積分型T-S模糊控制T-S模糊模式功因校正
外文關鍵詞:boost converterT-S fuzzyintegral controlrobustnessisolated AHPFC converter
相關次數:
  • 被引用被引用:2
  • 點閱點閱:188
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
由於資訊家電產品日益精良且功能強大,為符合環保需求,電源規範也越加嚴格,因此在本論文中主要以升壓型直流至直流電力轉換器(Boost converter)及隔離式功因校正交流至直流電力轉換器(Isolated AHPFC converter)兩種電力轉換器來探討輸出穩壓控制器之設計。為了設計控制器,我們利用不連續系統單時間尺度平均法(AM-OTS-DS)與不連續系統雙時間尺度平均法(AM-TTS-DS)求得上述兩種電力轉換器在切換週期(Switching period)內的非線性數學模式。由於電力轉換器具有高度之非線性特性。因此,我們利用近幾年被廣泛用於非線性系統控制的T-S模糊控制(Takagi-Sugeno fuzzy control)對上述兩種電力轉換器做輸出電壓穩壓控制。為了確保輸出電壓誤差會收斂至零,因此我們外加了一個誤差狀態(Error state)至原電力轉換器的系統方程裡,再以T-S模糊模式(T-S fuzzy model)來表示,最後推導得所謂積分型T-S模糊控制器(Integral T-S fuzzy controller)。接著,我們利用LMI來分析系統的穩定性及求解控制增益,再以MATLAB完成閉迴路系統的模擬。我們實作上述兩種直流至直流電力轉換器及交流至直流轉換器。而在控制器的部份我們以類比積體電路實現了積分型T-S模糊控制器,並且經由示波器上所顯示的輸出電壓響應驗証了積分型T-S模糊控制的可行性及具有零穩態誤差特性,因此對於外來的干擾(Disturbance)具有較好之強健性(Robustness)。
In this thesis, we propose an integral fuzzy controller to cope with the output-voltage
regulation problem for a PWM boost converter and an isolated AHPFC converter. First,
we use Averaging Method for One-Time-Scale Discontinuous System (AM-OTS-DS) and
Averaging Method for Two-Time-Scale Discontinuous System (AM-TTS-DS) to derive
the models of the boost converter and the isolated AHPFC converter, respectively. Then
an extra integral error signal is added to the converters' dynamic equations. The standard
T-S fuzzy model is established after we translate the coordinates to the regulated point.
Consequently, the stability and the feedback gains are proven and obtained, respectively,
by solving LMIs via MATLAB. One of the merits of the integral T-S fuzzy control is its
good performance to cope with disturbance. The performance is veri ed by carrying out
numerical simulations. Based on the appropriate controller, the prototypes of the boost
converter and the isolated AHPFC converter are developed. Where the integral T-S fuzzy
controllers are implemented by using analog multipliers and operational ampli ers. To
verify the voltage regulation, the oscillograms of converters' output voltage are exhibited.
Experimental results demonstrate the feasibility of the controller developed according to
T-S fuzzy theory.
Contents
1 Introduction 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2 Modeling for Converters 4
2.1 Conventional PWM Boost Converter . . . . . . . . . . . . . . . . . . . . 4
2.1.1 Dynamical Analysis of Conventional PWM Boost Converter [6] . . 4
2.1.2 Averaging Method of One Time Scale Discontinuous System [7] . . 5
2.1.3 Modeling for conventional PWM Boost Converter . . . . . . . . . . 6
2.2 Isolated AHPFC coverter . . . . . . . . . . . . . . . . . . . . . . . 7
2.2.1 Power Factor Correction [8] [2] . . . . . . . . . . . . . . . . . . . . 7
2.2.2 Active Power Factor Correction [4] . . . . . . . . . . . . . . . . . . 10
2.2.3 Dynamical Analysis of Isolated AHPFC Converter [4] . . . . . . . . 11
2.2.4 Averaging Method for Two Time Scale Discontinuous System [7] . . 15
2.2.5 Modeling for Isolated AHPFC Converter [2] . . . . . . . . . . . . . 15
3 Integral Takagi-Sugeno Fuzzy Regulation 18
3.1 T-S Fuzzy Model [9] [10] . . . . . . . . . . . . . . . . . . . . . 18
3.2 Parallel Distributed Compensation [11] . . . . . . . . . . . . . . 22
3.3 Linear Matrix Inequalities [11] . . . . . . . . . . . . . . . . . . 24
3.4 Regulation of Integral T-S Fuzzy Controller [12] . . . . . . . .. . 25
3.4.1 Control Gains Design . . . . .. . . . . . . . . . . . . . . . . . 27
3.4.2 Implementation of Control Law . . . . . . . . . . . . . . . . . . . . 29
3.5 Regulator Design and Simulation for Converters . . . . . . . . . . . . 29
3.5.1 Conventional Boost Converter . . . . . . . . . . . . . . . . . . . . . 30
3.5.2 Isolated AHPFC Converter . . . . . . . . . . . . . . . . . . . . . . . 36
4 Experiment 41
4.1 Conventional PWM Boost Converter . . . . . . . . . . . . . . . . . . . 41
4.1.1 MOSFET Gate Driver [2] . . . . . . . . . . . . . . . . . . . . . . . 41
4.1.2 Current Sensor . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
4.1.3 Inductor Design . . .. . . . . . . . . . . . . . . . . . . . . . . . 43
4.1.4 Output Capacitor Design [2] . . . . . . . . . . . . . . . . . . . . . 45
4.2 Isolated AHPFC Converter . . . . . . . . . . . . . . . . . . . . . . . . 46
4.2.1 Isolation Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . 46
4.2.2 Design for Exciting Inductor Lm and Inductor L [4] . . . . . . . . . 46
4.2.3 Design for Storage Capacitor CP and Output Capacitor CS [4] . . . 48
4.3 Overall Structure . . . . . . . . . . . . . . . . . . . . . . . . . 50
4.4 Experiment Results . . . . . . . .. . . . . . . . . . . . . . . . 51
5 Conclusions and Future Works 58
5.1 Conclusions .. . . . . . . . . . . . . . . . . . . . . . . . . . . 58
5.2 Future Works . . . . .. . . . . . . . . . . . . . . . . . . . . . . 58
A Stabilization Model for the Converters 59
A.1 PWM Boost Converter . . . . . . . . . . . . . . . . . . . . . . . . . 59
A.2 Isolated AHPFC Converter . . . .. . . . . . . . . . . . . . . . . . . 61
B Photographs of Experiment 64
C Controller Circuits Design 67
C.1 PWM Boost Converter . . . . . . . . . . . . . . . . . . . . . . . . . 67
C.2 Isolated AHPFC Converter . . . . . . . . . . . . . . . . . . . . . . 70
D Components List 73
D.1 PWM Boost Converter . . . . . . . . . . . . . . . . . . . . . . . 73
D.2 Isolated AHPFC Converter . . . . . . . . . . . . . . . . . . . . . 75
Reference 78

List of Figures
1.1 Framework of the switching mode power supply system. . . . . . . . . . . 1
2.1 Ideal PWM boost converter circuit. . . . . . . . . . . .. . . . . . . . . 5
2.2 Non-ideal PWM boost converter circuit. . . . . . . . . . . . . . . . . . 5
2.3 Boost converter circuit while power MOSFET is turned on. . . . . . . . . . 6
2.4 Boost converter circuit while power MOSFET is turned o . . . . . . . . . . 6
2.5 Equivalent circuit of boost converter. . . . . . . . . . . . . . . . . . 6
2.6 Sketch of deriving the model using AM-OTS-DS method. . . . . . . . . . . 8
2.7 Sinusoidal source and load network . . . . . . . . . . . . . . . . . . . 8
2.8 Power triangle for lagging and leading. . . . . . . . . . . . . . . . . 9
2.9 power supply with a capacitor lter. . . . . . . . . . . . . . . . . . . 9
2.10 Isolation power supply with PFC device. . . . . . . . . . . . . . . . 9
2.11 Input voltage and current with and without power factor correction. . . 10
2.12 Buck-Boost circuit with a bridge rectifier. . . . . . . . . . . . . . . 10
2.13 Current iM(t) in a period. .. . . . . . . . . . . . . . . . . . . . . . 11
2.14 Isolated AHPFC Converter. . .. . . . . . . . . . . . . . . . . . . . . 12
2.15 Stage 1 (M : ON;D1 : ON;D2 : OFF;D3 : OFF). . . . . . . . . . . . . . . 12
2.16 Stage 2 (M : OFF;D1 : OFF;D2 : ON;D3 : ON). . . . . . . . . . . . . . . 13
2.17 Stage 3 (M : OFF;D1 : OFF;D2 : OFF;D3 : ON). . . . . . . . . . . . . . 13
2.18 Stage 4 (M : OFF;D1 : OFF;D2 : OFF;D3 : OFF). . . . . . . . . . . . . 14
2.19 Voltage and current waveforms of inductors and capacitors. . . . . . . 14
2.20 Sketch of deriving the model using AM-TTS-DS method. . . . . . . . . . . 17
3.1 Global sector bound nonlinearity. .. . . . . . . . . . . . . . . . . . . 20
3.2 Local sector bound nonlinearity. . . . . . . . . . . . . . . . . . . . . 21
3.3 Concept of T-S fuzzy model system. .. . . . . . . . . . . . . . . . . . 23
3.4 The concept of integral T-S fuzzy control. . . . . . . . . . . . . . . . 25
3.5 The concept of coordinate translation. .. . . . . . . . . . . . . . . . 26
3.6 States response of PWM boost converter subject to an input voltage Vi
changing from 25V ! 30V ! 20V when the load R is with 101. . 34
3.7 Output voltage response and control input of PWM boost converter subject
to an input voltage Vi changing from 25V ! 30V ! 20V when the load R
is with 101 .. . . . . 34
3.8 States response of PWM boost converter subject to a load R changing from
101 ! 211 ! 42.7 when the input voltage Vi is with 25V . . . . . . . . 35
3.9 Output voltage response and control input of PWM boost converter subject
to a load R changing from 101 ! 211 ! 42.7 when the input voltage Vi is with 25V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.10 The response of the output voltage and the capacitor's voltage vCP subject
to a load R changing from 18 ! 12 ! 18. . . . . . . . . . . . . . . . . 39
3.11 The response of the integral error state (x3) and control input of isolated
AHPFC converter subject to a load R changing from 18 ! 12 ! 18. . 40
4.1 Power MOSFET Gate Driver . . . . . . . . . . . . . . . . . . . . . . 42
4.2 Inductor Current Waveform . . . . . . . . . . . . . . . . . . . . . 44
4.3 Capacitor Voltage Waveform . . .. . . . . . . . . . . . . . . . . . . 45
4.4 Storage capacitor's voltage vCP and output capacitor's voltage vCS for isolated AHPFC converter . . . . . . . . . . . . . . . . . . . . . . . . 48
4.5 Closed-loop structure of PWM boost converter. . . . . . . . . . . . . 50
4.6 Closed-loop structure of isolated AHPFC converter. . . . . . . . . . . 50
4.7 Output voltage response of the PWM boost converter operating under the
input voltage Vi = 20 when the load changes from 42.7 ! 211 (a) and changes from 211 ! 42:7 (b). The upper line represents output voltage in DC mode and the lower line represents output voltage in AC mode. . . . 52
4.8 Output voltage response of the PWM boost converter operating under the
input voltage Vi = 25 when the load changes from 42:7 ! 211 (a) and changes from 211 ! 42:7 (b). The upper line represents output voltage in DC mode and the lower line represents output voltage in AC mode. . . . 52
4.9 Output voltage response of the PWM boost converter operating under the
input voltage Vi = 30 when the load changes from 42:7 ! 211 (a) and changes from 211 ! 42:7 (b). The upper line represents output voltage in DC mode and the lower line represents output voltage in AC mode. . . . 53
4.10 Output voltage response of the PWM boost converter operating under the
load R = 101 when the input voltage changes from 25V ! 30V (a) and changes from 30V ! 20V (b). Where upper line represents input voltage in DC mode and lower line represents output voltage in AC mode. . . . . . 53
4.11 Inductor's current of the PWM boost converter operating under the load
R = 42.7 when the input voltage is 20V (a) and 30V (b). . . . . . . . . . 54
4.12 Inductor's current of the PWM boost converter operating under the load
R = 211 when the input voltage is 20V (a) and 30V (b). . . . . . . . . . 54
4.13 Output voltage response of isolated AHPFC converter when the load changes
from 18 ! 12 (a) and changes from 12 ! 18 (b). . . . . . . . . . . . 55
4.14 Inductor current waveforms of isolated AHPFC converter when the load is
18 (a) and 12 (b). The upper line represents inductor current iL and
the lower line represents output voltage. . . . . . . . . . . . . . . . 55
4.15 The current of the transformer's primary of isolated AHPFC converter
when the load is 18 (a) and 12 (b). The upper line represents the current of the primary of transformer and the lower line represents output voltage. . 56
4.16 The current of the transformer's secondary of isolated AHPFC converter
when the load is 18 (a) and 12 (b). The upper line represents the current
of the secondary of transformer and the lower line represents output voltage. 56
4.17 Input line voltage and current of isolated AHPFC converter when the load
is 18 (a) and 12 (b). . . . . . . . . . . . . . . . . . . . . . . . . . 57
B.1 Conventional PWM boost converter with a PWM circuit. . . . . . . . . . . 64
B.2 Current sensor. . . . . . . . . . . . . . . . . . .. . . . . . . . . . 64
B.3 T-S fuzzy controller of PWM boost converter. . . . . . . . . . . . . . 65
B.4 Load. . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . 65
B.5 Isolated AHPFC converter with a PWM circuit. . . . . . . . . . . . . . 66
B.6 T-S fuzzy controller of isolated AHPFC converter. . . . . . . . . . . 66
B.7 Load. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
C.1 Current-to-voltage transforming circuit of PWM boost converter. . . . . 67
C.2 Integral error circuit of PWM boost converter. . . . . . . . . . . . . 67
C.3 Linear control circuit of PWM boost converter. . . .. . . . . . . . . . 68
C.4 Membership function circuits of PWM boost converter. . . . . . . . . . 68
C.5 The circuit of reconstructing capacitor's voltage of PWM boost converter.69
C.6 Nonlinear control circuit of PWM boost converter. . . . . . . . . . . . 69
C.7 Isolation circuit of isolated AHPFC converter. . . . . . . . . . . . . 70
C.8 Integral error circuit of isolated AHPFC converter. . . . . . . . . . 70
C.9 Linear control circuit of isolated AHPFC converter. . . . . . . . . . 71
C.10 Membership function circuits of isolated AHPFC converter. . . . . . 71
C.11 Nonlinear control circuit of isolated AHPFC converter. . . . . .. . . 72

List of Tables
3.1 Parameters of PWM boost converter . . . . . . . . . . . . . . . . . . 31
3.2 Parameters of isolated AHPFC converter . . . . . . .. . . . . . . . . 37
4.1 Parameters of the inductor design for PWM boost converter . . . . . . . . 44
4.2 Parameters of the output capacitor design for PWM boost converter . . . . 46
4.3 Parameters of inductors design for isolated AHPFC converter . . . . . . . 48
4.4 Parameters of the capacitor design for isolated AHPFC converter . . . . . 49
D.1 Components list for PWM boost converter . . . . . . . . . . . . . . . . 73
D.2 Components list for the PWM circuit of PWM boost converter . . . . . . . 73
D.3 Components list for the T-S fuzzy controller of PWM boost converter . . . 73
D.4 Components list for isolated AHPFC converter . . . . . . . . . . . . . . 75
D.5 Components list for the PWM circuit of isolated AHPFC converter . . . . 76
D.6 Components list for the T-S fuzzy controller of isolated AHPFC converter 76
[1] H. K. Khalil, Nonliear Systems", Prentice-Hall, Inc, pp.488-491, 1996.
[2] R. W. Erickson, and D. Maksimovic, Fundamentals of Power Electronics", Kluwer Academic Publishers, 2001.
[3] Ned Mohan, Tore M. Undeland and Willian P. Robbins, Power Electronics", John Wiley and Sons, Inc. 1995.
[4] M. Z. Zhang, Analysis and Synthesis for a Novel Single-Stage Isolated High Power Factor Correction Converter", Master Thesis of NCKU, 2002.
[5] Aldo Balestrino, Alberto Landi, and Luca Sani, CUK Converter Global Control Via Fuzzy Logic and Scaling Factors, IEEE Trans. on Industry Applications, vol. 38, no. 2, pp. 406-413 Mar./Apr. 2002.
[6] H. K. Lam, T. H. Lee, F. H. F. Leung, and P. K. S. Tam, Fuzzy Control of DC-DC Switching Converters: Stability and Robustness Analysis", The 27th Annual Conference of the IEEE Industrial Electronics Society, 2001.
[7] J. Sun, and H. Grotstollen, Averaged Modelling of Switching Power Converters: Reformulation and Theoretical Basis", IEEE Conf., pp.1165-1172, 1992.
[8] A. I. Pressman, Swithcing Power Supply Design", McGraw-Hill, 1999.
[9] K. Y. Lian, T. S. Chiang, C. S. Chiu, and P. Liu, Synthesis of Fuzzy Model-Based Designs to Synchronization and Secure Communications for Chaotic Systems", IEEE Trans. Syst., Man, Cybern. B, vol. 31, no. 1, pp.66-83, Feb 2001.
[10] Peter Liu, Exact and Approximate LMI-Based Control for Fuzzy And Nonlinear
Systems", Dissertation of CYCU, 2002.
[11] W. C. Lin, Fuzzy Model Based Tracking Control with H1 Performance", Master
Thesis of CYCU, 2001.
[12] Chien-Yu Huang, T-S Fuzzy Controller Design for DC-DC Power Converter", Master Thesis of CYCU, 2002.
[13] Colonel Wm. and T. McLyman, Designing Magnetic Components for High Frequency DC-DC Converters", Kg Magnetics, Inc. San Marino, California, 1992.
電子全文 電子全文(本篇電子全文限研究生所屬學校校內系統及IP範圍內開放)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top