跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.88) 您好!臺灣時間:2024/12/04 14:58
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:張鎮中
研究生(外文):Chen-Chung Chang
論文名稱:動態控制反應比對電腦滑鼠在視窗作業下績效之影響
論文名稱(外文):Effects of dynamic C/R ratio control on mouse positioning performance for windows tasks
指導教授:唐國豪唐國豪引用關係
指導教授(外文):Kuo-hao Tang
學位類別:碩士
校院名稱:逢甲大學
系所名稱:工業工程學所
學門:工程學門
學類:工業工程學類
論文種類:學術論文
論文出版年:2003
畢業學年度:91
語文別:中文
論文頁數:60
中文關鍵詞:滑鼠加速閥值控制反應比電腦滑鼠滑鼠操作績效
外文關鍵詞:computer mouseC/R ratiomouse positioning performancemouse acceleration threshold
相關次數:
  • 被引用被引用:8
  • 點閱點閱:503
  • 評分評分:
  • 下載下載:48
  • 收藏至我的研究室書目清單書目收藏:1
隨著電腦硬體設備蓬勃發展,電腦螢幕的設計以大尺寸及高解析度為發展的重點,再加上Windows作業系統下圖形使用者界面設計(GUI)大量的使用,與過去DOS作業環境下只仰賴鍵盤之操作已全然不同,突顯出了滑鼠靈敏度調整之重要性。電腦滑鼠方面之研究在相關文獻中已有相當廣泛地探討,相關研究的結果顯示,影響游標移動速度與準確度的主要因素有:目標尺寸、目標距離、移動方向、控制反應比、游標軌跡、偏移角度…等。雖然Windows作業系統內有針對滑鼠動態調整控制反應比,但在滑鼠的整體動作時間(包括游移時間及調整時間)中,調整時間(fine-adjustment time)的長短決定了整體的動作時間,因此針對滑鼠在游移狀態及調整狀態下設定不同的控制反應比應該會是一個較佳的設計,但是相關文獻並未針對滑鼠之動態控制反應比(dynamic C/R ratio)來探討,因此本研究主要是探討動態改變滑鼠控制反應比對滑鼠操作績效之影響。
本研究之實驗分兩個部分,實驗一為前測實驗,是考慮一個典型的滑鼠點選作業(移動滑鼠關閉視窗),考慮的自變數有:目標距離、移動方向、以及滑鼠加速閥值組合,依變數為動作時間及總位移。實驗結果顯示,不同的移動方向、目標距離和滑鼠加速閥值組合對於滑鼠動作時間和總位移有顯著之影響,並且自訂之滑鼠加速閥值組合較Windows內建的為佳。實驗的第二部分是基於前測實驗所得之結果來探討動態控制反應比在整體視窗作業下之影響,利用背景執行程式的方式長時間收集使用者在視窗作業下所有的滑鼠動作(移動、單擊、雙擊、拖曳…等),並將無效之動作捨去(無意義的動作、過長動作時間…等)後,探討滑鼠績效,考慮的自變數有:目標距離(9水準)、移動方向(8水準)、以及滑鼠加速度閥值組合(內建、自訂),其中目標距離以0~100像素為水準一,100~200像素為水準二,依此類推;而移動方向則是將360度等分為八個方向;而自訂之滑鼠加速度閥值組合為實驗一所得之最佳組合,依變數為動作時間。實驗結果顯示在整體的視窗作業下,自訂之滑鼠加速閥值組合較Windows作業系統內建之閥值為佳。
With fast computer-related hardware development, the design of VDT has been focused on large size and high resolution. Furthermore, inputting data or controlling computer using GUI with input devices under Windows operation system is totally different from that just using keyboard as main input device under DOS. It points out the importance of adjusting the accuracy of mouse. Issues about computer mouse are wildly discussed including from either ergonomics aspect or HCI aspect. Studies indicated that target size, target amplitude, direction of movement, C/R ratio, trajectory of cursor, angle biased, and so on are the main factors that effect the moving speed and positioning accuracy of computer mouse. Although Windows OS does set the C/R ratio of mouse dynamically, fine adjust time, however, determines the total operation time (including travel and adjust time), setting C/R ratio base on the traveling or adjusting status of mouse probably will be a better design. Although issues about computer mouse are wildly discussed, none of them focused on dynamic C/R ratio. This study is to investigate the effects of dynamic C/R ratio control on mouse positioning performance for windows tasks
Experiments consisted of two parts. Experiment one is a preliminary experiment which focused on typical positioning task (moving mouse to close a specific window). Factors considered include target amplitude, direction of movement, and thresholds for acceleration of mouse. The dependent variables are movement time and displacement. The results showed that different target amplitude, direction of movement, and thresholds for acceleration of mouse had significant effect on the movement and displacement of computer mouse and user-defined threshold is better than Windows built-in threshold. Base on the results of preliminary experiment, the second part of experiment focused on all kinds of movement of mouse under Windows operation system. The program written in VB 6.0 collected all the data about mouse (move, click, double click, drag, and so on) by background executing the program and then analyzed the performance of mouse after dropped useless actions (meaningless, movement takes to long, and so on). Factors considers include target amplitude (9 levels), direction of movement (8 levels), and thresholds for acceleration of mouse (built-in and user defined). Take 0~100 pixels as level 1 for target amplitude and so forth and divide 360 degree into 8 levels for direction of movement. The dependent variable is movement time. The results indicated that user- defined threshold is better than that which is Windows built-in.
第一章 緒論1
1.1研究動機與目的1
1.2問題定義4
第二章 文獻探討8
2.1 游標定位設備之探討8
2.2 影響游標點選作業績效之因素10
2.3 電腦定位裝置績效評估之指標14
第三章 研究方法15
3.1 滑鼠種類及運作原理16
3.2 滑鼠動態控制反應比值之控制18
3.3 實驗一 在固定視窗作業下不同滑鼠加速度閥值對滑鼠績效之影響20
3.3.1 作業20
3.3.2 獨立變數20
3.3.3 相依變數22
3.3.4 受測者22
3.3.5 實驗設備23
3.3.6 實驗步驟24
3.4 實驗二 在整體視窗作業下系統內建與自訂滑鼠加速度閥值之比較25
3.4.1 作業28
3.4.2 實驗變數28
3.4.3 受測者29
3.4.4 實驗設備29
3.4.5 實驗步驟30
第四章 結果及分析32
4.1實驗一 在固定視窗作業下不同滑鼠加速度閥值對滑鼠績效之影響32
4.1.1以動作時間來分析32
4.1.2 以總位移來分析37
4.1.3實驗一結論42
4.2實驗二 在整體視窗作業下系統內建與自訂滑鼠加速度閥值之比較43
4.2.1 敘述統計43
4.2.2 推論統計45
4.2.2.1 整體分析45
4.2.2.2 以短距離來分析50
4.2.2.3以長距離來分析52
4.2.3 實驗二結論55
第五章 結論與未來研究方向56
參考文獻58
方怡娟 2002, 且顏色編碼鍵盤之設計比較與滑鼠及姿態輸入定位動作之軌跡研究, 逢甲大學工業工程所, 論士論文
Albert, A. 1982. The effect of graphic input device on performance in a cursor positioning task. Proceedings of the Human Factors Society 26th Annual Meeting. Santa Monica, CA: Human Factors Society, p54-58.
Becker, J. A. and Greenstein, J. S. 1986. A lead-lag compensation approach to display/control gain for touch tablets, Proceedings of the Human Factors Society 30 Annual Meeting (Human Factors Society, Santa Monica, CA).
Buck, L. 1980. Motor performance in relation to control-display gain and target width, Ergonomics, 23, 579-589.
Card, S. K., English, W. K. and Burr, B. J. 1978. Evaluation of mouse, rate-controlled isometric joystick, step keys, and text keys for text selection on a CRT, Ergonomics, 21, 601-613.
Crossman, E., and Goodeve, P. 1983. Feedback control of hand movements and Fitt’s Law. Quarterly Journal of Experiment Psychology, 35A, 251-278.
Epps, B. W. 1986. Comparison of six cursor devices based on Fitts’ law models, Proceeding of the 30th Annual Meeting of the Human Factors Society, Santa Monica, CA, 327-331.
Fitts, P. M. 1954. The information capacity of the human motor system in controlling the amplitude of movement, Journal of Experiental Psychology, 47, 381-391.
Fitts, P. M. and Peterson, J. R. 1964. Information capacity of discrete motor responses, Journal of Experimental Psychology, 67, 103-112.
Fredericks, C. M. 1996. Disorders of the cerbellum and its connections, in C. M. Fredericks and L. K. Saladin (eds), Pathophysiology of the Motor Systems (Philadelphia, PA: Davis), 445-466.
Greenstein, J. S. and Arnaut, L. Y. 1988. Input devices. In M. Helander (Ed.), Handbook of human computer interaction, 495-519. Amsterdam: Elsevier Science.
ISO/TC 159/SC4/WG3 N147: Ergonomic requirements for office work with visual display terminals (VDTs) - Part 9 - Requirements for non-keyboard input devices (ISO 9241-9), October 1999.
Jellinek, H. D. and Card, S. K. 1990. Powermice and use performance, Proceedings of the Human Factors in Computing Systems Conference: CHI’90 (Reading, MA: Addison-Wesley), 213-220.
Jenkins, W., and Connor, M. B. 1949. Some design factors in making settings on a linear scale. Journal of Applied Psychology, 33, 395-409.
Kantowitz, B. H. and Sorkin, R. D. 1983. Human factors: Understanding People-System Relationships, (Wiley, New York).
Kantowiz, B. H. , and Elvers, G. C. 1988. Fitt’s law with an isometric controller: Effects of order of control and control-display gain. Journal of Motor Behavior, 20, 53-66.
MacKenzie, I. S. and Buxton, W. 1992. Extending Fitts’ law to two-dimentional tasks, Proceedings of the CHI’92 Conference on Human Factors in Computing Systems, 219-226.
MacKenzie, I. S., Kauppinen, T. and Silfverberg, M. 2001. Accuracy measures for evaluating computer pointing devices, Proceedings of CHI, 9-16.
MacKenzie, I. S., & Riddersma, S. 1993. CRT vs. LCD: Empirical evidence for human performance differences. Submitted for publication.
Mark S. S., Ernest J. J.,1992. Human factors in engineering and design, Seventh Edition, McGRAW-HILL
Meyer, D. E., Abrams, R. A., Kornblum, S., Wright, C. E. and Smith, J. E. K. 1988. Optimality in human motor performance: Ideal control of rapid aimed movement, Psychological Review, 95, 340-370.
Phillips, J.G.. and Triggs, T. J. 2001. Characteristics of cursor trajectory controlled by the computer mouse. Ergonomics, Vol. 44, No. 5, 527-536.
Schmidt, R. A., Sherwood, D. E., Zelaznik, H. N. and Leikind, B. J. 1985. Speed-accuracy trade-offs in motor behavior: theories of impulse variability, in H. Heuer, U. Kleinbeck and K. H. Schmidt (eds), Motor Behavior: Control, and Acquisition (Berlin: Springer-Verlag), 79-123.
Swanson, N. G., Galinsky, T. L., Cole, L. L., Pan, C. S. and Sauter, S. L. 1997. The impact of keyboard design on comfort and productivity in a text-entry task, Applied Ergonomics, 28, 9-16.
Thomas, G. W. and Henry, H. E. 1996. Effects of angle of approach on cursor movement with a mouse: Consideration of Fitts’ Law, Computer in Human Behavior, 12, 481-495.
Trankle, U. and Deutschmann, D. 1991. Factors influencing speed and precision of cursor positioning using a mouse, Ergonomics, 34, 161-174.
Walker, N., Meyer, D. E. and Smelcer, J. B. 1993. Spatial and temporal characteristics of rapid cursor positioning movements with electromechanical mice in human-computer interaction, Human Factors, 35, 431-458.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top