跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.84) 您好!臺灣時間:2024/12/11 08:41
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:蕭旭洲
研究生(外文):Hsu-Chou Hsiao
論文名稱:探討DegP對大腸桿菌過度表現pac基因之影響及保護子對PenicillinAcylase先驅體之穩定性
論文名稱(外文):The Effect of DegP on pac Overexpression in Escherichia coli and Stability in Precursor of Penicillin Acylase for Chaperone
指導教授:周志雄
指導教授(外文):Chih-Hsiung Chou
學位類別:碩士
校院名稱:逢甲大學
系所名稱:化學工程學所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2003
畢業學年度:91
語文別:中文
論文頁數:69
中文關鍵詞:大腸桿菌盤尼西林醯胺水解酵素保護子
外文關鍵詞:E.coliChaperonePenicillin Acylase
相關次數:
  • 被引用被引用:0
  • 點閱點閱:171
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
利用大腸桿菌 (Escherichia coli;E. coli) 大量表達pac 基因生產盤尼西林水解酵素蛋白 (penicillin acylase ; PAC) 時會產生大量內涵體 (inclusion body) ,如果能減少內涵體的累積,可以提高具有活性的 PAC 產量,得到較高的比活性 (Specific PAC Activity)。在之前的研究中發現利用具有細胞間質蛋白水解酵素 (periplasmic protease) 及保護子 (chaperone) 活性的 DegP 酵素在大腸桿菌中的共同表現 (coexpression) 可以增加可溶解並具有活性的PAC。本研究利用沒有蛋白分解酵素的DegP突變種DegP S210A進行過度表達 pac ,找出DegP在大量表達 pac 基因時提高PAC活性所表現的活性以熱衝擊蛋白為主。並以DegP 的同源間質蛋白水解酵素, DegQ 及 DegS 進行進一步的研究發現 DegP 的保護子活性在大量表達 pac 基因可能也具有改善系統生理毒素的作用,所以DegP 在大量表達pac 基因才具有異於同源蛋白的改善效果,另一方面探討類似保護子作用的FkpA蛋白進行pac 基因的大量表達,發現FkpA也具有不錯的改善效果。第二部份利用基因工程技術將PAC基因去除信號胜月太,使PAC在細胞質中成熟並探討數種保護子系統對形成PAC 成熟蛋白的影響。本實驗的保護子系統有GroEL-GroES 和 DnaK-DnaJ-GrpE及類似保護子的表現因子trigger factor。
Coexpression of DegP resulted in a shift of in vivo penicillin acylase (PAC) synthesis flux from the nonproductive pathway to the productive one when pac was overexpressed。 The number of inclusion bodies,which consist primarily of protein aggregates of PAC precursors in the periplasm,was highly reduced, and the specific PAC activity was highly increased。DegP was a heat shock protein induced in response to pac overexpression,suggesting that the protein could possibly suppress the physiological toxicity caused by pac overexpression。Coexpression of DegPS210A,a DegP mutant without protease activity but retaining chaperone activity,could not suppress the physiological toxicity,suggesting that DegP protease activity was primarily responsible for the suppression, possibly by degradation of abnormal proteins when pac was overexpressed. However, a shortage of periplasmic protease activity was not the only reason for the deterioration in culture performance upon pac overexpression because coexpression of a DegP-homologous periplasmic protease,DegQ or DegS,could not suppress the physiological toxicity。The chaperone activity of DegP is proposed to be another possible factor contributing to the suppression。
In the second part of this study, the DNA fragment encoding the pac signal peptide was removed so that proPAC was expressed in the cytoplasm。 Effect of various cytoplasmic chaperones, including DnaK/J,GroEL/ES,and trigger factor,on the expression of cytoplasmic proPAC was investigated。
中文摘要………………………………………………………………..Ⅰ
Abstract…………………………………………………………………Ⅱ
目錄…………………………………………………………………….Ⅲ
表目錄………………………………………………………………….Ⅶ
圖目錄………………………………………………………………….Ⅷ
第一章緒言
1.1前言………………………………………………………………….1
1.2盤尼西林水解酵素之用途介紹…………………………………….2
1.3 PAC酵素的來源以及種類…………………………………………3
1.4 PAC酵素的成熟途徑………………………………………………4
1.5大量表達重組蛋白的策略…………………………………………6
1.6改善內涵體在過度基因表達的策略………………………………6
1.7研究動機與方向……………………………………………………8
第二章實驗方法 ……………………………………………………..11
2.1菌種的處理………………………………………………………..11
2.1.1本研究所使用菌種種類……………………………………….11
2.1.2培養基的製備………………………………………………….11
2.1.3抗生素的配製………………………………………………….11
2.1.4誘導劑的配置………………………………………………….11
2.1.5菌種的儲存與活化……………………………………………..11
2.1.6接菌 (inoculum) 的方法與細胞濃度的測量…………………12
2.2處理DNA技術……………………………………………………14
2.2.1本研究所使用質體DNA種類…………………………………14
2.2.2基因表達質體之建構………………………………………….14
2.2.3可轉形性細胞 (competent cell) 的製備……………………...15
2.2.4化學法轉形 (transformation)………………………………….15
2.3菌種培養…………………………………………………………..17
2.3.1批次菌種醱酵培養…………………………………………….17
2.3.2生化反應器之醱酵培養……………………………………….18
2.4酵素活性之定量分析……………………………………………..18
2.4.1 PAC 酵素活性之分析原理…………………………………....18
2.4.1.1酵素樣品之製備…………………………………………….19
2.4.1.2酵素反應…………………………………………………….19
2.4.1.3呈色反應…………………………………………………….19
2.4.2 b-半乳糖苷酶 (b-galactosidase;b-gal) 分析………………..20
2.5蛋白質SDS-PAGE分析法………………………………………..20
2.5.1蛋白質電泳樣品配置………………………………………….20
2.5.1.1可溶性蛋白電泳樣品的製備………………………………21
2.5.1.2不可溶性蛋白電泳樣品的製備…………………………….21
2.5.2進行電泳分離………………………………….……………….21
2.5.3蛋白質電泳凝膠顯色………………………………………….22
2.5.4西方墨漬製法的免疫分析方法……………………………….22
2.6實驗藥品…………………………………………………………..24
2.6.1培養基及誘導劑部分………………………………………….24
2.6.2化學轉形部分………………………………………………….25
2.6.3酵素分析部分………………………………………………….25
2.6.4 b-半乳糖苷酶分析部分………………………………………..25
2.6.5蛋白質電泳部分……………………………………………….26
2.6.6免疫分析部分………………………………………………….26
2.7實驗設備…………………………………………………………..27
第三章結果與討論 …………………………………………………..29
3.1在 pac 基因過度表達下共同表達DegP酵素………………….29
3.1.1過度表達pac基因及共同表達degP的結果………………..29
3.1.2過度表達pac基因及共同表達degP的其他效應…………..30
3.1.3過度表達 pac 基因誘導DegP 酵素表達熱衝擊蛋白的活性32
3.1.4利用 DegPS210A 的共同表達探討DegP酵素的活性作用…...33
3.1.5利用DegP的同源蛋白進行探討……………………………..34
3.1.6利用FkpA共同表達在 pac 基因的過度表現………………35
3.2利用保護子系統進行過量表達細胞質中的 PAC 酵素………...36
3.2.1細胞質中的 pac 基因過度表現………………………….…..36
3.2.2利用保護子系統的共同表現在細胞質中過量表現pac基因.37
3.3 DegP對大腸桿菌過度表現pac基因之影響及保護子對PAC先驅體之穩定性探討……………………………………………..39
第四章結論……………………………………………………………45
參考文獻 ………………………………………………………………62
1.Alvaro, G., R. Fernandez-Lafuente, C. M. Rosell, R. M. Blanco, J. L. Garcia-Lopez, and J. M. Guisan. 1992. Penicillin G acylase from Kluyvera citrophila: New choice as industrial enzyme. Biotechnol. Lett. 14:285-290.
2.Arie, J. P., N. Sassoon, and J. M. Betton. 2001. Chaperone function of FkpA, a heat shock prolyl isomerase, in the periplasm of Escherichia coli. Mol. Microbiol. 39:199-210.
3.Balasingham, K., D. Warburton, P. Dunnill, and M. D. Lilly. 1972. The isolation and kinetics of penicillin amidase from Escherichia coli. Biochim. Biophys. Acta 276:250-256.
4.Betton, J. M., D. Boscus, D. Missiakas, S. Raina, and M. Hofnung. 1996. Probing the structural role of an alpha beta loop of maltose- binding protein by mutagenesis: Heat-shock induction by loop variants of the maltose-binding protein that form periplasmic inclusion bodies. J. Mol. Biol. 262:140-150.
5.Bowden, G. A., A. M. Paredes, and G. Georgiou. 1991. Structure and morphology of protein inclusion bodies in Escherichia coli. Bio/Technology 9:725-730.
6.Chou, C. P., J.-H. Tseng, B.-Y. Kuo, K.-M. Lai, M.-I. Lin, and H.-K. Lin. 1999. Effect of SecB chaperone on production of periplasmic penicillin acylase in Escherichia coli. Biotechnol. Prog. 15:439-445.
7.Chou, C. P., C.-C. Yu, W.-J. Lin, B.-Y. Kuo, and W.-C. Wang. 1999. Novel strategy for efficient screening and construction of host/vector systems to overproduce penicillin acylase in Escherichia coli. Biotechnol. Bioeng. 65:219-226.
8.Chou, C. P., C.-C. Yu, J.-H. Tseng, M.-I. Lin, and H.-K. Lin. 1999. Genetic manipulation to identify limiting steps and develop strategies for high-level expression of penicillin acylase in Escherichia coli. Biotechnol. Bioeng. 63:263-272.
9.Chung, C. T., and R. H. Miller. 1993. Preparation and storage of competent Escherichia coli cells. Methods Enzymol. 218:621-627.
10.Connolly, L., A. De Las Penas, B. M. Alba, and C. A. Gross. 1997. The response to extracytoplasmic stress in Escherichia coli is controlled by partially overlapping pathways. Gene. Dev. 11:2012-2021.
11.Daumy, G. O., D. Danley, and A. S. McColl. 1985. Role of protein subunits in Proteus rettgeri penicillin G acylase. J. Bacteriol. 163:1279-1281.
12.Daumy, G. O., J. A. Williams, A. S. McColl, T. J. Zuzel, and D. Danley. 1986. Expression and regulation of the penicillin G acylase gene from Proteus rettgeri cloned in Escherichia coli. J. Bacteriol. 168:431-433.
13.del Rio, G., M.-E. Rodriguez, M.-E. Munguia, A. Lopez-Munguia, and X. Soberon. 1995. Mutant Escherichia coli penicillin acylase with enhanced stability at alkaline pH. Biotechnol. Bioeng. 48:141-148.
14.Erarslan, A., I. Terzi, A. Guray, and E. Bermek. 1991. Purification and kinetics of penicillin G acylase from a mutant strain of Escherichia coli ATCC 11105. J. Chem. Tech. Biotechnol. 51:27-40.
15.Forney, L. J., D. C. L. Wong, and D. M. Ferber. 1989. Selection of amidases with novel substrate specificities from penicillin amidase of Escherichia coli. Appl. Environ. Microbiol. 55:2550-2555.
16.Gang, D. M., and K. Shaikh. 1976. Regulation of penicillin acylase in Escherichia coli by cyclic AMP. Biochim. Biophys. Acta 425:110-114.
17.Garcia, J. L., and J. M. Buesa. 1986. An improved method to clone penicillin acylase genes: Cloning and expression in Escherichia coli of penicillin G acylase from Kluyvera citrophila. J. Biotechnol. 3:187-195.
18.Guigueno, A., P. Belin, and P. Boquet. 1997. Defective export in Escherichia coli caused by DsbA''-PhoA hybrid proteins whose DsbA'' domain cannot fold into a conformation resistant to periplasmic proteases. J. Bacteriol. 179:3260-3269.
19.Hayhurst, A., and W. J. Harris. 1999. Escherichia coli Skp chaperone coexpression improves solubility and phage display of single-chain antibody fragments. Protein Express. Purif. 15:336-343.
20.Hiratsu, K., M. Amemura, H. Nashimoto, H. Shinagawa, and K. Makino. 1995. The rpoE gene of Escherichia coli, which encodes sE, is essential for bacterial growth at high temperature. J. Bacteriol. 177:2918-2922.
21.Kadokura, H., H. Kawasaki, K. Yoda, M. Yamasaki, and K. Kitamoto. 2001. Efficient export of alkaline phosphatase overexpressed from a multicopy plasmid requires degP, a gene encoding a periplasmic protease of Escherichia coli. J. Gen. Appl. Microbiol. 47:133-141.
22.Kane, J. F., and D. L. Hartley. 1988. Formation of recombinant protein inclusion bodies in Escherichia coli. Trends Biotechnol. 6:95-101.
23.Kang, J. H., Y. Hwang, and O. J. Yoo. 1991. Expression of penicillin G acylase gene from Bacillus megaterium ATCC 14945 in Escherichia coli and Bacillus subtilis. J. Biotechnol. 17:99-108.
24.Kasche, V., K. Lummer, A. Nurk, E. Piotraschke, A. Rieks, S. Stoeva, and W. Voelter. 1999. Intramolecular autoproteolysis initiates the maturation of penicillin amidase from Escherichia coli. Biochim. Biophys. Acta 1433:76-86.
25.Kolmar, H., P. R. Waller, and R. T. Sauer. 1996. The DegP and DegQ periplasmic endoproteases of Escherichia coli: specificity for cleavage sites and substrate conformation. J. Bacteriol. 178:5925-5929.
26.Lazar, S. W., and R. Kolter. 1996. SurA assists the folding of Escherichia coli outer membrane proteins. J. Bacteriol. 178:1770-1773.
27.Lin, W.-J., S.-W. Huang, and C. P. Chou. 2001. DegP coexpression minimizes inclusion body formation upon overproduction of recombinant penicillin acylase in Escherichia coli. Biotechnol. Bioeng. 73:484-492.
28.Lin, W.-J., S.-W. Huang, and C. P. Chou. 2001. High-level extracellular production of penicillin acylase by genetic engineering of Escherichia coli. J. Chem. Tech. Biotechnol. 76:1030-1037.
29.Lin, Y.-H., H.-C. Hsiao, and C. P. Chou. 2002. Strain Improvement to Enhance the Production of Recombinant
Penicillin Acylase in High-Cell-Density Escherichia coli Cultures. Biotechnol.:1458-1461.
30.Lindsay, C. D., and R. H. Pain. 1990. The folding and solution conformation of penicillin G acylase. Eur. J. Biochem. 192:133-141.
31.Lindsay, C. D., and R. H. Pain. 1991. Refolding and assembly of penicillin acylase, an enzyme composed of two polypeptide chains that result from proteolytic activation. Biochemistry-USA 30:9034-9040.
32.Makrides, S. C. 1996. Strategies for achieving high-level expression of genes in Escherichia coli. Microbiol. Rev. 60:512-538.
33.Mayer, H., J. Collins, and F. Wagner. 1979. Cloning of the penicillin G acylase gene of Escherichia coli ATCC 11105 on multicopy plasmids, p. 459-470. In K. N. Timmis and A. Puhler (ed.), Plasmids of medical, environmental, and commercial importance. Elsevier/North-Holland Biomedical Press, Amsterdam.
34.Meevootisom, V., and J. R. Saunders. 1987. Cloning and expression of penicillin acylase genes from overproducing strains of Escherichia coli and Bacillus megaterium. Appl. Microbiol. Biotechnol. 25:372-378.
35.Miller, C. G. 1996. Protein degradation and proteolytic modification, p. 938-954. In F. C. Neidhardt, J. L. Ingraham, E. C. C. Lin, K. B. Low, B. Magasanik, W. S. Reznikoff, M. Riley, M. Schaechter, and H. E. Umbarger (ed.), Escherichia coli and salmonella, vol. 1. ASM Press, Washington, D.C.
36.Miller, J. H. 1972. Experiments in molecular genetics. Cold Spring Harbor Laboratory, Cold Spring Harbor.
37.Missiakas, D., J.-M. Betton, and S. Raina. 1996. New components of protein folding in extracytoplasmic compartments of Escherichia coli SurA, FkpA and Skp/OmpH. Mol. Microbiol. 21:871-884.
38.Missiakas, D., and S. Raina. 1997. Protein misfolding in the cell envelope of Escherichia coli: New signaling pathways. Trends Biochem.Sci. 22:59-63.
39.Niersbach, H., W. Tischer, M. Weber, F. Wedekind, and R. Plapp. 1995. Isolation and mapping of a mutant penicillin G acylase with altered substrate specificity from Escherichia coli. Biotechnol. Lett. 17:19-24.
40.Nishihara, K., M. Kanemori, H. Yanagi, and T. Yura. 2000. Overexpression of Trigger Factor Prevents Aggregation of Recombinant Proteins in Escherichia coli. Appl. Environ. Microbiol. 66:884-889.
41.Ohashi, H., Y. Katsuta, M. Nagashima, T. Kamei, and M. Yano. 1989. Expression of the Arthrobacter viscosus penicillin G acylase gene in Escherichia coli and Bacillus subtilis. Appl. Environ. Microbiol. 55:1351-1356.
42.Pallen, M. J., and B. W. Wren. 1997. The HtrA family of serine proteases. Mol. Microbiol. 26:209-221.
43.Pan, K.-L., H.-C. Hsiao, C.-L. Weng, M.-S. Wu, and C. P. Chou. 2003. Roles of DegP in Prevention of Protein Misfolding in the Periplasmupon Overexpression of Penicillin Acylase in Escherichia coli. J. Bacteriol. 185:3020- 3030.
44.Perez-Perez, J., and J. Gutierrez. 1995. An arabinose-inducible expression vector, pAR3, compatible with ColE1-derived plasmids. Gene 158:141-142.
45.Perez-Perez, J., G. Marquez, J.-L. Barbero, and J. Gutierrez. 1994. Increasing the efficiency of protein export in Escherichia coli. Bio/Technology 12:178-180.
46.Raivio, T. L., and T. J. Silhavy. 1999. The sE and Cpx regulatory pathways: overlapping but distinct envelope stress responses. Curr. Opin. Microbiol. 2:159-165.
47.Rawlings, N., and A. Barrett. 1994. Families of serine peptidases. Methods Enzymol. 244:19-61.
48.Sawers, G., and M. Jarsch. 1996. Alternative regulation principles for the production of recombinant proteins in Escherichia coli. Appl. Microbiol. Biotechnol. 46:1-9.
49.Shewale, J. G., B. S. Deshpande, V. K. Sudhakaran, and S. S. Ambedkar. 1990. Penicillin acylases: Applications and potentials. Process Biochem. 25:97-103.
50.Shewale, J. G., and H. Sivaraman. 1989. Penicillin acylase: Enzyme production and its application in the manufacture of 6-APA. Process Biochem. 24:146-154.
51.Sizmann, D., C. Keilmann, and A. Bock. 1990. Primary structure requirements for the maturation in vivo of penicillin acylase from Escherichia coli ATCC 11105. Eur. J. Biochem. 192:143-151.
52.Skorko-Glonek, J., K. Krzewski, B. Lipinska, E. Bertoli, and F. Tanfani. 1995. Comparison of the structure of wild-type HtrA heat shock protease and mutant HtrA proteins. A Fourier transform infrared spectroscopic study [published erratum appears in J Biol Chem 1995 Dec 29;270(52):31413]. J. Biol. Chem. 270:11140-11146.
53.Skorko-Glonek, J., K. Krzewski, G. Zolese, E. Bertoli, and F. Tanfani. 1997. HtrA heat shock protease interacts with phospholipid membranes and undergoes conformational changes. J. Biol. Chem. 272:8974-8982.
54.Skorko-Glonek, J., A. Wawrzynow, K. Krzewski, K. Kurpierz, and B. Lipinska. 1995. Site-directed mutagenesis of the HtrA(DegP) serine protease, whose proteolytic activity is indispensable for Escherichia coli survival at elevated temperatures. Gene 163:47-52.
55.Sobotkova, L., V. Stepanek, K. Plhackova, and P. Kyslik. 1995. Cloning of penicillin G acylase-encoding gene from Escherichia coli high-producing strain RE3. Biotechnol. Lett. 17:723-728.
56.Sobotkova, L., V. Stepanek, K. Plhackova, and P. Kyslik. 1996. Development of a high-expression system for penicillin G acylase based on the recombinant Escherichia coli strain RE3(pKA18). Enzyme Microb. Technol. 19:389-397.
57.Spiess, C., A. Beil, and M. Ehrmann. 1999. A temperature-dependent switch from chaperone to protease in a widely conserved heat shock protein. Cell 97:339-347.
58.Strauch, K. L., K. Johnson, and J. Beckwith. 1989. Characterization of degP, a gene required for proteolysis in the cell envelope and essential for growth of Escherichia coli at high temperature. J. Bacteriol. 171:2689-2696.
59.Towbin, H., T. Staehelin, and J. Gordon. 1979. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc. Nat. Acad. Sci. USA 76:4350-4354.
60.Valle, F., P. Balbas, E. Merino, and F. Bolivar. 1991. The role of penicillin amidases in nature and in industry. Trends Biochem. Sci. 16:36-40.
61.van der Wal, F. J., J. Luirink, and B. Oudega. 1995. Bacteriocin release protein: mode of action, structure, and biotechnological application. FEMS Microbiol. Rev. 17:381-399.
62.van der Wal, F. J., C. M. ten Hagen-Jongman, B. Oudega, and J. Luirink. 1995. Optimization of bacteriocin-release-protein-induced protein release by Escherichia coli: Extracellular production of the periplasmic molecular chaperone FaeE. Appl. Microbiol. Biotechnol. 44:459-465.
63.Waller, P. R., and R. T. Sauer. 1996. Characterization of degQ and degS, Escherichia coli genes encoding homologs of the DegP protease. J. Bacteriol. 178:1146-1153.
64.Williams, J. A., and T. J. Zuzel. 1985. Penicillin acylase (E.C.3.4.11) substrate specificity. Modification by in vitro mutagenesis. J. Cell. Biochem. (Suppl.) 9B:99.
65.Yee, L., and H. W. Blanch. 1993. Recombinant trypsin production in high cell density fed-batch cultures in Escherichia coli. Biotechnol. Bioeng. 41:781-790.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top