跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.81) 您好!臺灣時間:2024/12/15 02:46
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:魏民傑
研究生(外文):Andy wei
論文名稱:電泳披覆奈米級玻璃粉體製作金屬層與IC頂層內連接導線之介電保護層
論文名稱(外文):Fabrication of Dielectric Passivation Layers for Metallic Films and IC Top Interconnections by Electrophoretic Deposition of Nanosized Glass Powders
指導教授:駱榮富
指導教授(外文):R. F. Louh
學位類別:碩士
校院名稱:逢甲大學
系所名稱:材料科學所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2003
畢業學年度:91
語文別:中文
論文頁數:223
中文關鍵詞:介電層微機電系統(MEMS)電泳披覆法(EPD)遠紅外線快速退火爐(RTA).鋁硼矽氧玻璃粉體(Al-B-Si-O)奈米二氧化矽粉體(SiO2)
外文關鍵詞:Microelectromechnical system (MEMS)Far infrared rapid thermal annealer (RTA).Electrophoretic deposition (EPD)Alumino-borosilicate glass powderDielectric layersNanosized silica glass powder
相關次數:
  • 被引用被引用:1
  • 點閱點閱:598
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
以電泳披覆(Electrophoretic Deposition;EPD)技術製作精密陶瓷薄膜於導電性基材表面為一有效且快速的製程方法。本研究之重點為以EPD技術應用於微電子半導體/微機電(MEMS)的領域。使用奈米級SiO2和Al-B-Si-O玻璃粉之介電陶瓷粉體,利用電泳披覆方法製作玻璃金屬層和IC頂層內連接線之介電保護層。在 EPD技術中特別在懸浮液穩定性(Suspension Stability)的控制及不同RTA熱處理條件下,將對所製作之 EPD 鍍層披覆效果與材料特性有所影響。透過溶劑種類之搭配並輔以玻璃粉體粒徑大小選擇,期使獲得具有良好之電泳披覆效率與穩定性良好之EPD懸浮液。
以0.5 g 奈米SiO2玻璃粉體加入丙酮溶劑體積150 ml以調製電泳披覆懸浮液,此外添加HNO3和NH4OH當作pH調整劑藉以改變EPD懸浮液中的狀況。由實驗得知,調整其pH值為1.76時,粉體之分散效果頗佳且懸浮穩定性表現良好。惟奈米SiO2懸浮液偏向鹼(pH = 6 ~ 9)其粉體凝聚現象顯得嚴重且分散性較劣,雖其電泳披覆效率高但披覆鍍層乾燥後易於產生裂痕。
另外,吾人嘗試使用Al-B-Si-O玻璃粉體加入不同溶劑配比之異丙醇和丙酮 (IPA/Acetone)、乙酸乙酯和乙醇(EA/EtOH)及乙醯丙酮和乙醇(Acac/EtOH)之總體積100 ml混合溶劑以調製電泳披覆懸浮液。經由實驗結果得知,使用異丙醇與丙酮為20:80、乙酸乙酯與乙醇體積比為80:20及乙醯丙酮與乙醇體積比為20:80條件,Al-B-Si-O玻璃鍍層的披覆重量及表面結構均勻性皆有良好表現。此外,利用攪磨手段將Al-B-Si-O玻璃粉體粒徑微細化所產生的效果十分顯著,以攪磨12 hr的條件為最適作業時間,玻璃披覆層內部粉體堆積緻密,且所得的電泳披覆效率頗高。
吾人將奈米 SiO2鍍層透過不同RTA退火熱處理條件進行燒結緻密化,試片表面依然清淅可見獨立的粉體顆粒,由此可知純度高的奈米級SiO2粉體軟化點溫度高於950℃。以Al-B-Si-O玻粉體披覆所得生坯進行RTA熱處理(750℃/20 min),試片鍍層本身顯微結構已有所變化,判斷其軟化點在750℃以下。
利用電泳披覆法應用於IC內連接導線,當施加電場強度低於50 V/cm時集中披覆在金(Au)導線兩端部位,此為電力線易在尖端集中造成披覆不均勻。吾人可採用不同形狀相對電極以改變其電力線分布,此將可以改善金導線披覆不均的狀況。
The electrophoretic deposition (EPD) technique has been used as a simple but effective way to produce thin ceramic layers onto the electrically conductive substrates. This study is aimed to employ EPD method in engineering aspects of microelectronic and microelectromechanical systems regarding to fabrication of dielectric passivation layers for metallic films and IC top interconnections by EPD of nanosized SiO2 and Al-B-Si-O glass powders. The effects of stability of EPD suspension and rapid thermal annealing (RTA) conditions on both EPD performance and properties of deposited layer were taken into account. The optimized EPD yield and suspension stability can be obtained by choosing adequate types of solvent, mixing ratio of various solvents, and particle size distribution of glass powders.
Nanosized silica powder of 0.5 g added in 150 ml acetone solvent was formed as EPD suspension, of which pH value can be modified by adding minor amount of HNO3 or NH4OH. The result showed that EPD suspension at pH = 1.76 resulted in a perfect dispersion of glass powder and good EPD yield as well. In contrast, when EPD suspension was controlled to be basic (pH = 6 ~ 9), poor powder dispersion would appear due to the pronounced agglomeration. Though the EPD yield was higher with EPD suspension at basic condition, the deposited glass layers were prone to have cracking during drying step or after.
Furthermore, another EPD suspension was prepared by adding nanosized Al-B-Si-O glass powder in 100 ml mixed solvents of IPA/acetone, ethyl acetate/EtOH, and Acac/EtOH in their various volume ratios. The optimized volume ratio to achieve better layer morphology and good EPD yield was found to be 20/80 for IPA/acetone, 80/20 for ethyl acetate/EtOH or 20/80 for Acac/EtOH. Attrition milling turned out to be an effective route to reduce the powder size of Al-B-Si-O glass powder. The results showed that Al-B-Si-O glass powder after attrition milling for 12 hr led to considerably good EPD yield and denser powder packing in the EPD layers.
When SiO2 EPD layers were treated with various RTA conditions, the microstructure of sintered glass thin layers was still associated with individual particulates, which indicates the pure silica powder has softening point higher than RTA temperature of 950oC. On other hand, the Al-B-Si-O glass layers through RTA at 750oC/20 min had substantial changes in microstructures of glass passivation layers by reaching the full densification due to its lower softening point.
To use the EPD method for making the dielectric passivation layers for metal bond wires to serve as IC top interconnections, the deposition of glass powder was much favorable to be around both ends of a conductive wire when the applied electrical field was less than 50 V/cm. In such a particular case, the above-mentioned drawback is conjunction with the non-uniform electrical field throughout the dimension of the fine metallic bond wires used as working electrodes for EPD process, that is, the concentrated electrical lines gathered at the ends of conductive wires. The distribution of electrical lines can be effectively altered by using counter-electrodes in different geometry; therefore, the smooth, uniform deposition of glass layers can be expected via EPD process. The results of this study would have a number of contributions regarding to the potential applications in advanced microelectronic packaging.
目 錄
中文摘要……………………………………………………………………..I
英文摘要……………………………………………………………………III
目錄…………………………………………………………………………Ⅴ
圖目錄………………………………………………………………………Ⅸ
表目錄…………………………………………………………………….ⅩⅤⅡ
第一章緒 論……………………………………………………………1
1.1陶瓷玻璃絕緣體材料1
1.1.1 低介電體陶瓷…………………………………………………1
1.1.2 二氧化矽結構3
1.2 微電子封裝技術5
1.3IC封裝工程用低介電常數材料10
1.4 奈米材料及奈米陶瓷粉體特性14
1.4.1 奈米粉體合成特性……………………………………….…17
1.4.2 奈米陶瓷粉體的穩定化………………………………….…17
1.4.3 奈米粉體應用…………………………………………… …18
1.5電泳披覆法應用於快速原型化技術18
1.6 研究目的及重點…………………………………..….…….. ….23
第二章理論基礎…………………………………………………………25
2.1電泳技術發展………………………………………………….25
2.1.1電泳披覆機制…………………………………………..26
2.2電動力學現象簡介31
2.2.1電泳法利用於厚/薄層披覆…………………………....36
2.2.2電泳懸浮液系統種類…………………………………..38
2.3膠體粒子表面電荷來源………………………………………....43
2.3.1 表面電位之基本概念………………………………….........46
2.4 電雙層理論.………………………...……………………………48
2.4.1工作電場所影響的電雙層結構………………….……...51
2.5膠體化學與D.L.V.O.理論簡述……………………………...54
2.6EPD懸浮液的穩定性………………………………………….65
2.6.1溶劑之影響……………………………………………..65
2.7陶瓷粉體之影響………………………………………………..73
2.8奈米凝聚的現象………………………………………………..74
2.9定電壓與定電流之電泳披覆…………………………………...75
2.10 懸浮液中粉體的沉降速率……………………………………...79
2.11 帶電粉體與電極之交互運動狀況…………………………….80
2.12 溶膠-凝膠製程的概述…………………………………………..83
2.12.1 溶膠凝膠的演進歷史…………………………………..........83
2.12.2 溶膠-凝膠在EPD上的應用………………………………..85
2.13 功能梯度材料(FGM)發展………...…………..…………….91
2.14 溶膠和EPD技術在IC半導體製程上之應用………………94
第三章實驗步驟與方法………………………………………………..100
3.1試片製備100
3.2電泳披覆設備裝置102
3.3粉末製備與粉體特性分析109
3.4奈米EPD懸浮液之配製109
3.5EPD懸浮液溶劑比例與種類選擇111
3.6EPD之鋁硼矽玻璃粉體懸浮液之穩定度測試111
3.7EPD製程參數的控制調整112
3.8 EPD之鋁硼矽玻璃絕緣材料粉體處理……………………......112
3.9 試片退火熱處理…………………………………………… ….113
3.10 微結構與電性分析………………………………………... ….116
第四章結果與討論………………………………………………….......124
4.1EPD懸浮液之製備與最適化…………………………………..124
4.1.1製備奈米EPD懸浮液 ……………………………….124
4.2研磨處理對EPD之影響……………………………………….144
4.2.1攪磨Al-B-Si-O玻璃粉體……………………………..144
4.2.2不同有機溶劑配比對EPD之影響………………….157
4.3利用溶膠-凝膠進行電泳披覆製程174
4.4紅外線快速退火爐(RTA)在EPD上應用176
4.4.1奈米二氧化矽燒結……………………………………... ….176
4.4.2非奈米Al-B-Si-O玻璃粉體進行燒結……………………..176
4.5IC內連接導線進行電泳披覆製程184
4.6 電泳披覆法應用於快速原型化技術…………………………..190
4.7 經不同熱處理條件EPD的試片之AFM檢測………………..193
4.8 Al-B-Si-O玻璃絕緣層之電阻量測………….……………….199
4.9 本實驗工作的未來方向與建議…………………………….…...205
第五章結 論…………………………………………………………...209
參考文獻…………………………………………………………………...213
參 考 文 獻
1謝世豪, “玻璃之結構與特性,” in陶瓷技術手冊, 汪建民,中華民國粉末冶金學會出版(1999), pp. 876-879
2李宗銘, “覆晶構裝用液狀底部充填晶片封裝材料技術與應用,” 化工技術5 [10] 178-183 (1997)
3鄭建星,陳真夙, “應用於先進積體電路之低介電常數,” 電子月刊6 [10] 116-128(2000)
4韋文誠, “奈米陶瓷粉體之特性及粉體結構應用概況,” 化工技術,9 [10] 126-132(2001)
5鞏建華, “你不可不知的奈米科技,” 世茂出版社(2002), pp.38-41
6D. Kochan, C.C. Kai, and D. Zhaohui, “Rapid prototyping issues in the 21st century,” Computers in Industry, 39 [1] 3-10 (1999)
7Y. Xue and P. Gu, “A review of rapid prototyping technologies and systems,” Computer-Aided Design, 28 [4] 307-18 (1996)
8M. Müllenborn, H. Dirac, J.W. Petersen, and S. Bouwstra, “Fast three-dimensional laser micromachining of silicon for microsystems,” Sensors and Actuators A Physical, 52 [1-3] 121-5 (1996)
9J. Jonsmann, O. Sigmund, and S. Bouwstra, “Compliant thermal microactuators,” Sensors and Actuators A: Physical, 76 [1-3] 463-9 (1999)
10Z. R. Ulberg and Y. F. Deinegd, “Electrophoretic Composite Coatings,” Ellis Horwood, New York (1992) pp. 35-84
11F. F. Reuss, “Notice sur un nouvel Effet de 1□electricite gavanique,” Mem. Soc. Imp. Natur. Moscou, 2 (1809) 327-37
12黃琇芳, ”電泳塗裝技術,” 化工技術, 10 [4] 49-52 (1986)
13S. Sender off and W.E. Reid, Jr., “Electrophoretic Deposition of Barium Titanate,” U.S. Pat. No. 2,843,541 (1958)
14S. Okamura, T. Tsukamoto, and N. Koura, “Fabrication of Ferroelectric BaTiO3 Film by Electrophoretic Deposition,” Japanese J. Appl. Phys., 32 [9B] 4182-5 (1993)
15M. Nagai, K. Yamashita, T. Umegaki and Y. Takuma, “Electrophoretic Deposition of Ferroelectric Barium Titanate Thick Films and Their Dielectric Properties,” J. Am. Ceram. Soc., 76 [1] 253-5 (1993)
16K. Yamashita, M. Nagai and T. Umegaki, “Fabrication of green films of single-and multicomponent ceramic composites by electrophoretic deposition technique,” J. Mat. Sci. , 32 (1997) 6661-6664
17P. Sarkar and P. S. Nicholson, “Electrophoretic Deposition (EPD):Mechanisms, Kinetics, and Application to Ceramics,” J. Am. Ceram. Soc. 79 [8] 1987-2002 (1996)
18I. Zhitomisky and L. Gal-Or, “Formation of hollow fibers by electrophoretic deposition,” Materials Letters, 38 [1] 10-17 (1999)
19A. Arthur W.著, 陶雨台譯, 表面物理化學, 國立編譯館 (1989) pp. 209-214
20R. W. Powers, “The Electrphoretic Forming of Beta-Alumina Ceramic,” J. Electrochem. Soc., 122 [4] 490-50 (1975)
21M. Becks, U. Klein and M. Peiniger, “Electrophoretic Deposition of Textured YBa2Cu3O7-x Films on Substrates, ” American Institute of Physics, (1989) 5939-5943
22P. S. Nicholson and P. Sarkar, “Electrophoretic Deposition and its use to synthesize Al2O3/ZrO2 Micro-Laminate ceramic/ceramic Composite,” J. of Materials Science, 28 (1993) 6274-6278
23R. Chaim, G. Stark and L. Gal-Or, “Electrochemical ZrO2 and Al2O3 coatings on SiC Substrates,” J. of Materials Science, 29 (1994)6241- 6248
24Luc Vandeperre, Omer Van Der and Jacques Persello, “Electrophoretic Forming of Silicon Carbide Ceramic,”J. of the Euro. Ceram. Soc., 17 (1996) 373-3376
25F. Harbach and H. Nienburg, “Homogeneus Funtional Ceramic Components through Electrophoretic Deposition from Stable Colloidal Suspensions -Ⅱ. Beta-Alumina and Concepts for Industrial Production,” J. of European Ceramic Society, 18 (1998) 685-692
26S. Akram, W. Farnworth, and D. Hembree, “Method for Making Interconnects and Semiconductor Structures Using Electrophoretic Photoresist Deposition,” United States Patent No. 5,607,818 (1997)
27J. Van Tassel and C. A. Randall, “Electrophoretic Deposition and Sintering of Thin/Thick PZT Films,” J. of Euro. Ceram. Soc., 19 (1999) 955-958
28Luc Vandeperre, Omer Van Der, “SiC-Graphite Laminates Shaped by EPD,” Ceramic Bulletin, (1998) 53-58
29M. Gupta and C. Y. Loke, “Micromechanical Modeling of Processing-induced damage in Al-SiC Metal Matrix Composites Synthesized Using the Disintegrated Melt Deposition Technique, ” Materials Research Bulletin, 34 (1999) 71-79
30I. Zhitomirsky and A. Petric, “Electrophoretic Deposition of Ceramic Materials for Fuel Cell Applications,” J. of Euro. Ceram. Soc. 20 (2000) 2055-2061
31C. Kaya, F. Kaya, A. R. Boccaccini and K. K. Chawla, “Fabrication and Characterisation of Ni-coated Carbon Fibre-reinforced Ceramic Matrix Composites using Electrophoretic Deposition,” Acta Mater. 49 (2001) 1189-1197
32D. Myers, Surfaces, Interfaces, and Colloids : Principles and Applications , 2nd (Ed.), Wiley, New York (1999) pp. 47, 92, 232
33D. U. K. Roa and E. C. Subbarao, ”Electrophoretic Deposition of Magnesia,” Ceramic Bulletin, 58 [4] 467-9 (1979)
34S. N. Heavens, ”Electrophoretic deposition as a processing route for ceramics,” in Advanced Ceramic Process and Technology, J. G. P. Binner (Ed.), Vol. 1, Noyes Publications (1990) pp. 255-283
35H. A. Fisch, “Electrochemical Deposition of Aluminide Coatings from Aqueous Suspensions,” J. Electrochem. Soc., 119 [1] 57-64 (1975)
36K. W. Hang, J. Andrus, and W.M. Anderson, “High-Temperature Porcelain-Coated-Steel Electronic Substrate-Composition and Properties,” RCA Review, 42 (1981) 159-181
37J. Mizuguchi, K. Sumi and T. Muchi, “A Highly Stable Nonaqueous Suspension for the Eectrophoretic Deposition of Powdered Substances,” J. Electrochem. Soc., 130 [9] 1819-25 (1983)
38Fuh-Shan Shiau, Tsang-Tse Fang, and Tsung-Hsing Leu, “Effect of Particle-Size Distribution on the Microstructural Evolution in the Intermediate Stage of Sinter,” J. Am . Ceram. Soc., 80 [2] 286-90 (1997)
39J. H. Kennedy and A. Foissy, “Fabrication of Beta-Alumina Tubes by Electrophoretic Deposition from Suspensions in Dichloromethane,” J. Electrochem. Soc., 122 [4] 482-6 (1975)
40A. A. Foissy and G. Robert, “Electrophoretic Forming of Beta-Alumina from Dichloromethane Suspensions,” Ceramic Bulletin, 6 [2] 251-255 (1982)
41R. W. Powers, “Ceramic Aspects of Forming Beta-Alumina by Electrophoretic Deposition,” Ceramic Bulletin, 65 [9] 1270-75 (1986)
42R.W. Powers, “Powder Requirements for Beta-Alumina Ceramic Formed by Electrophoretic Deposition,” Ceramic Bulletin, 65 [9] 1275-81 (1986)
43H. A. Fisch, ”Electrophoretic Deposition of Aluminide Coatings from Aqueous Suspensions,” Ceramic Bulletin, 11 [9] 275-86 (1990)
44T. Ishihara, K. Sato, Y. Mizuhara and Y. Takita, “Preparation of Yttria Stabilized Zirconia Films for Solid Oxide Fuel Cells by Electrophoretic Deposition Method,” Chem. Lett., 30 (1992) 943-6
45V. A. Lamb and H. I. Salmon, “Electrophoretic Deposits of Barium Titanate,” Ceramic Bulletin, 41 [11] 781-82 (1962)
46S. Mizuta, M. Parish and H. K. Bowen, “Dispersion of BaTiO3 Powders (Part 1),” Ceramics International, 10 (1984) 83-87
47R. Thomas, D. C. Dube, M. N. Kamalasanan and S. Chandra, “Optical and electrical properties of BaTiO3 thin films prepared by chemical solution deposition,” Thin Solid Films, 346 (1999) 212-225
48F. Linder and A. Feltz, “Electrophoretic Deposition: A Method for Preparation of Semiconducting Oxide Ceramic Layers,” Solid State Ionics, 63-65 (1993) 13-17
49C.T. Chu and B. Dunn, “Fabrication of YBa2Cu3O7-x Superconducting Coatings by Electrophoretic Deposition,” Appl. Phys. Lett., 55 [5] 492-4 (1989)
50M. Hein et. al., “Electrophoretic Deposition of Textured YBa2Cu3O7-x Films on Silver Substrates,” J. Appl. Phys., 66 [12] 5940-3 (1989)
51H. Nojima, M. Nagata. H. Shintaku and M. Koba, “Fabrication of YBa2Cu3O7-x Superconducting Films on Cu Substrates by an Electrophoretic Deposition Technique,” Japanese J. Appl. Phys., 29 [9] L1655-8 (1990)
52H. Hojima, H. Shintaku, M. Nagata and M. Koba, “Fabrication of Ag-Doped YBa2Cu3O7-x Superconducting Films on Cu Substrates by Electrophoretic Deposition,” Japanese J. Appl. Phys., 30 [7A] L1166-8 (1991)
53J. Mizuguchi, M. Sukuki, H. Yamato and M. Matsumura, “Characterization of YBa2Cu3O7-x Layers Prepared by Electrophoretic Deposition,” J. Electrochem. Soc., 138 [10] 2944-6 (1991)
54S. Sugiyama, A. Takagi and K. Tsuzuki, “(Pb,La)(Zr,Ti)O3 Films by Multiple Electrophoretic Deposition/Sintering Processing,” Japanese J. Appl. Phys., 30 [9B] 2170-3 (1991)
55P. Sarkar, S. Mathur, P. S. Nicholson and C. V. Stager, “Fabrication of Textured Bi-Sr-Ca-Cu-O Thick Film by Electrophoretic Deposition,” J. Appl. Phys., 69 [3] 1775-7 (1991)
56P. Sarkar, X. Huang, and P. S. Nicholson, “Structured Ceramic Microlaminates by Electrophoretic Deposition,” J. Am. Ceram. Soc., 75 [10] 2907-9 (1992)
57P. Sarkar, X. Huang and P. S. Nicholson, “Zirconia/Alumina Functionally Gradient Composites by Electrophoretic Deposition Technique,” J. Am. Ceram. Soc., 76 [4] 1055-6 (1993)
58P. S. Nicholson, P. Sarkar, and X. Huang, “Electrophoretic Deposition and Its Use of Synthetize ZrO2/Al2O3 Microlaminate Ceramic/Ceramic Composites,” J. Mater. Sci., 28 (1991) 6274-8
59R. Moreno and B. Ferrari, “Advanced Ceramics Via EPD of Aqueous Slurries,” Ceramic Bulletin, 11 (1989) 74-80
60J. D. G. Duran, M. C. Guindo, and A. V. Delgado, “Electrophoretic Properties of Colloidal Dispersions of Monodisperse Zinc Sulfide: Effect of Potential-Determining Ions and Surface Oxidation,” J. of Colloid and Interface, 173 (1995) 436-442
61K. Kuwabara, K. Sugiyama and H. Ohno, “All-State Electrochromic Device: I. Electrophoretic Deposition Film of Proton Conductive Solid Electrolyte,” Solid State Ionics, 44 (1991) 313-8
62L. Vandeperre, O. V. D. Biest, and A. Foissy, “Electro-phoretic Forming of Silicon Carbide Ceramics,” J. of the Euro. Ceram. Soc., 17 (1997) 373-6
63M. Gupta, C. Y. Loke, “Synthesis of free standing, one dimensional, Al-SiC based functionally gradient materials using gradient materials using gradient slurry disintegration and deposition,” Materials Science and Engineering , A276 (2000) 210-217
64Luc Vandeperre and Omer Van Der Biest, “SiC-Graphite Laminates Shaped by EPD,” Ceramic Bulletin, 78 [3] 735-40 (1993)
65B. Ilschner, “Processing-Microstructure-Property Relationships In Graded Materials,” J. Mech. Phys. Solids, 44 [5] 647-656 (1996)
66M. Koizumi, “FGM activities in Japan,” Composites Part B, 28B (1997) 1-4
67B. Ferrari, A.j. Sanchez-Herencia, R. Moreno, “Aqueous lectrophoretic deposition of Al2O3/ZrO2 layered ceramics,” Materials Letters, 35 (1998) 370-374
68Fengqiu Tang, Tetsuo Uchikoshi, Kiyoshi Ozawa, and Yoshio Sakka, “Electrophoretic deposition of aqueous nano-γ-Al2O3 suspensions,” Materials Research Bulletin, 37 (2002) 653-660
69B. Ferrari, A.J. Sanchez-Herencia, and R. Moreno, “Electrophoretic Forming of Al2O3/Y-TZP Layered Ceramics From Aqueous Suspensions,” Materials Research Bulletin, 33 [3] 487-499 (1998)
70Begona Ferrari, Juan Carlos Farinas, and Rodrigo Moreno, “Determination and Control of Metallic Impurities in Alumina Deposits Obtained by Aqueous Electrophoretic Deposition,” J. Am. Ceram. Soc., 84 [4] 733-39 (2001)
71B. Ferrari, and R. Moreno, “Electrophoretic Deposition of Aqueous Alumina Slips,” Journal of the Europeam Ceramic Society, 17 (1997)549-556
72A.R. Boccaccini, H. Kern, H.-G. Kruger, P.A. Trusty, and D.M.R. Taplin, “Electrophoretic deposition of nanoceramic paricles onto electrically conducting fibre fabrics,” 43rd International Scientific Colloquium Technical University of Ilmenau, September 21-24, 1998
73K. Simovic, V.B. Miskovic-Stankovic, D. Kicevic, P. Jovanic, “Electrophoretic deposition of thin alumina films from water suspension,” Physicochemical and Engineering Aspects 209 (2002) 47-55
74Wenjea J. Tseng, and Chun Hsien Wu, “Aggregation, rheology and electrophoretic packing structure of aqueous Al2O3 nanoparticle suspensions,” Acta Materialia, 50 (2002) 3757-3766
75Fengqiu Tang, Yoshio Sakka, Tetsuo Uchikoshi, “Electrophoretic deposition of aqueous nano-sized zinc oxide suspensions on a zinc electrode”, Materials Research Bulletin, 38 (2003) 207-212
76H. C. Hamaker, “For of a depositie by electrophoresis,” Trans Faraday Soc., 36 (1940) 279- 283
77I. Zhitomirsky, “Cathodic Electrodeposition of Ceramic and Organoceramic Materials. Fundamental Aspects,” Advances in Colloid and Interface Science, 97 (2002) 279-317
78北原文雄, 古澤邦夫, 尾崎正孝, 大島廣行, Zeta Potential, (1995) 東京都社pp. 164-166
79J. S. Reed, Principles of Ceramics Processing, 2nd (ed.), Wiley-Inter. Science, New York (1994) pp. 221
80A. Sussman and T.J. Ward, “ Electrophoretic Deposition of Coatings from Glass-Isopropanol Slurries,” RCA Review, 42 (1981) 178-197
81S.-Y. Zhano, S.-B. Lei,S.-H.Chen,H.-Y. Wang, “ Assembly of two-dimensional ordered monolayers of nanoparticles by electrophoretic deposition,” Colloid Polym Sci, 278 (2000) 682-686
82I. Zhitomirsky, “Cathodic Electrodeposition of Ceramic and Organoceramic Materials : Fundamental Aspects,” Advances in Colloid and Interface Science, 97 (2002) 279-317
83H.X.Li, M.Z.Lin, J.G.Hou, “ Submonolayer and single crystal film from ligand-stabilized siliver nanoparticles,” Thin Soild Film, 370 (2000) 85-88
84M Affoune, B.L.V. Prasad, Hirohiko Sato, Toshiaki Enoki, Yutaka Kaburagi, and Yoshihiro Hishiyama, “Experimental evidence of a single nano-graphene,” Chemical Physics Letters, 348 (2001) 17-20
85Y.C. Wang, I.C. Leu, and M.H.Hon, “Preparation and characterization of nanosized ZnO arrays by electrophoretix deposition,” Journal of Crystal Growth, 237-239 (2002)564-568
86周祖康,顧愓人,馬季銘,膠体化學基礎,北京大學 (1996), pp. 164-165及pp. 240-242
87潘友鴻, 外加電場磁場對陶瓷懸浮液中微粉粒泳動行為的影響,逢甲大學材料科學研究所碩士論文 (2001)
88Scott A. Guelcher, Yuri Solomentsev and John L. Anderson, “Aggregation of pairs of particles on electrode during electrophoretic deposition,” J. Powder Technology, 110 (2000) 90-97
89L. Vorwerg, M. Antonietti and K. Tauer, “Electrophoretic mobility of latex particles: effect of particle size and surface structure,” J. Colloids and Surfaces, A: Physicochemical and Engineering Aspects, 150 (1999) 129-135
90翁暢健, 壓克力/二氧化鈦複合材料的製備與性質研究, 中原大學化學系研究所碩士論文 (2002)
91陳慧英,黃定加,朱秦億“溶膠凝膠法在薄膜製備上之應用” 化工技術7[11] pp. 152-166(2000)
92Laubersheimer, H. J. Ritzhaupt-Kleissl, J. HauBelt, and G. Emig, “Electrophoretic deposition of sol-gel ceramic microcomponents using UV-curable alkoxide precursors,” J. of Euro. Ceram. Soc., 18 (1998) 225-260
93H. Nishimori, M. Tatsumisago, and T. Minami, “Influence of size of dispersed silica particles on preparation of thick silica films by using electrophoretic sol-gel deposition,” Bull. Chem. Soc. Jpn., 69 (1996) 815-818
94Z. T. Zhang, Y. Huang, and Z. Z. Jiang, “Electrophoretic deposition forming of SiC-TZP composites in a nonaqueous sol media,” J. Am. Ceram. Soc., 77 [7] 1946-49 (1994)
95C. Kaya, A. R. Boccaccin and P. A. Trusty, “Processing and characterisation of 2-D woven ,metal fibre-reinforced multilayer silica matrix composites using electrophoretic deposition and pressure filtration,” J. of Euro. Ceram. Soc., 19 (1999) 2859-66
96R. Boccaccin, P. A. Trusty and C. B. Ponton, “Colloidal processing of mullite matrix material suitable for infiltrating woven fibre performs using electrophoretic deposition,” J. of the Euro. Ceram. Soc., 16 (1996) 1319-27
97Katagiri, K. Hasegawa, A. Matsuda, M. Tatsumisago and T. Minami, “Preparation of transparent thick films by electrophoretic sol-gel deposition using phenyltriethoxysilan-derived particles,” J. Am. Ceram. Soc., 81 [9] 2501-3 (1998)
98殷景準, 王雅珍, 鞠剛, 楊尚林, 頤大明,功能材料概論, 哈爾濱工業大學出版社, pp. 258-260 (1998)
99P. Sarkar, et al., “Functionally Graded Ceramic/Ceramic and Metal/Ceramic Composites by Electrodeposition,” Composites, 28B (1997) 49-59
100T.J. Illston, C.B. Ponton, P.M. Marquis, E.G. Butler., “The manufacture of woven fibre ceramic matrix composites using electrophoretic deposition,” P Duran, JF Fernandez, (ed). Third Euroceramics Vol. 1, Madrid, Spain. Faenza Editrice Iberica (1993) pp. 419-24
101T.J. Illston, P.A. Doleman , E.G. Butler, P.M. Marquis, C.B. Ponton , MJ Gilbert et al. UK Patent no. 9124816.1, November 1991.
102T.J. Illston, C.B. Ponton , P.M. Marquis , E.G. Butler, “Electrophoretic deposition of silica/alumina colloids for the manufacture of CMCs,” Ceram Engng Sci Proc, 14 (1994) 1052-59
103A.R. Boccaccini,C.B. Ponton, “Processing ceramic-matrix composites using electrophoretic deposition,” JOM, 47(7) 34-7 (1995)
104P.A. Trusty, A.R. Boccaccini, E.G. Butler, C.B. Ponton, “Novel techniques for manufacturing woven fiber reinforced ceramic matrix composites.I Preform fabrication,” Mater and Manuf Processes, 10 (1995) 1215-26.
105P.W. Brown, “Electrophoretic deposition of mullite in a continuous fashion utilising non-aqueous polymeric sols,” Ceram Engng Sci Proc, 15 (1995)
106T Ohkawa, “Elsner FH. Fabrication of fiber-reinforced composites,” US Patent No. 5468358, (1995)
107P.A. Trusty, T.J. Illston, E.G. Butler, P.M. Marquis, C.B. Ponton, “A comparison of the processing conditions for fabrication of SiC/SiO2 and Al2O3/Al2O3 woven fibre reinforced composites,” Adv. Synthesis and Processing of Composites and Adv. Ceramics, Vol. 1. Ohio: The American Ceramic Society, (1995) pp. 257-62
108C Kawai, S Wakamatsu, “Fabrication of C/SiC composites by an electrodeposition/sintering method and the control of the properties,” J Mater Sci, 31 (1996) 2165-70.
109P.A. Trusty, A.R. Boccaccini, E.G. Butler, C.B. Ponton, “The development of mullite matrix ceramic fiber composites using electrophoretic deposition,” Ceram Trans, 78 (1996) 63-70.
110A.R. Boccaccini, I MacLaren, M.H. Lewis, C.B. Ponton, “Electrophoretic deposition infiltration of 2-D woven SiC fibre mats with mixed sols of mullite composition,” J Eur Ceram Soc, 17 (1997) 1545-50.
111A.R. Boccaccini , J Ovenstone, P.A. Trusty, “Fabrication of woven metal fibre reinforced glass mateix composites,” Appl Compos Mater, 4 (1997) 145-55.
112H.H. Streckert, K.P. Norton, J.D. Katz, J.O. Freim, “Microwave densification of electrophoretically infiltrated silicon carbide composite,” J Mater Sci, 32 (1997) 6429-33.
113P Sarkar, S Datta, P.S. Nicholson, “Electrophoretic deposition of controlled ceramic microstructures,” Ceram Trans, 85 (1997) 231-50.
114C.J. Brinker, G.W. Scherer, Sol-gel science, New York: Academic Press, 1990.
115P.A. Trusty, C.B. Ponton, A.R. Boccaccini, “Fabrication of woven Nicalon® (NL 607) SiC fibre-yttrrium disilicate CMCs using electrophoretic deposition,” Ceram Trans, 83 (1998) 391-8.
116I Zhitomirsky, “Electrophoretic and electrolytic deposition of ceramic coatings on carbon fibres,” J Eur Ceram Soc, 18 (1998) 849-56.
117C Kaya, P.A. Trusty, C.B. Ponton, “Electrophoretic filtration deposition (EPD) of Saffil alumina fibre-reinforced mullite multilayer nano-ceramic matrix composites,” Ceram Trans, 83 (1998) 399-406.
118C Kaya, A.R. Boccaccini, P.A. Trusty, “Processing and characterisation of 2-D woven metal fibre-reinforced multilayer silica matrix composites using electrophoretic deposition and pressure filtration,” J Eur Ceram Soc, 19 (1999) 2859-66
119I Zhitomirsky, “Electrophoretic hydroxyapatite coatings and fibres,” Mater Lett, 42 (2000) 262-71.
120A.R. Boccaccini, U Schindler, H.G. Krueger, “Ceramic coatings on carbon and metallic fibres by electrophoretic deposition,” Mater Lett, 10 (1999) 26-33.
121S Kooner, W.S. Westby, C.M.A. Waston, P.M. Farries, “Processing Nextel® (720/mullite composition composite using electrophoretic deposition,” J Eur Ceram Soc, 20 (2000) 631-8.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top