跳到主要內容

臺灣博碩士論文加值系統

(44.211.26.178) 您好!臺灣時間:2024/06/16 01:19
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:詹翔麟
研究生(外文):shiang-lin Jan
論文名稱:梭織物複合材料熱膨脹係數之研究
論文名稱(外文):Study of Thermal Expansion Coefficients of Woven Fabric Composites
指導教授:蔡昆協
指導教授(外文):k-h tsai
學位類別:碩士
校院名稱:逢甲大學
系所名稱:紡織工程所
學門:工程學門
學類:紡織工程學類
論文種類:學術論文
論文出版年:2003
畢業學年度:91
語文別:中文
論文頁數:62
中文關鍵詞:梭織物熱膨脹係數
外文關鍵詞:thermal expansion coefficientwoven
相關次數:
  • 被引用被引用:0
  • 點閱點閱:329
  • 評分評分:
  • 下載下載:43
  • 收藏至我的研究室書目清單書目收藏:0
本研究是利用剛性模型並考慮材料受熱時紗束與樹脂間之熱交互作用力來計算梭織物複合材料之熱膨脹係數,並進一步討論不同之織物參數對梭織物複合材料熱膨脹係數之影響。剛性模型分析理論考慮到梭織物內單位格子之纖維束排列及彎曲情況,並導入熱作用力於分析模型中而求得梭織物複合材料之熱膨脹係數。在分析梭織物複合材料之熱膨脹係數時,將單位格子分割成許多薄片,假設每一薄片在熱膨脹時在同一方向之變形量相等,再將纖維束軸向與樹脂間之熱作用力帶入變形分析模式中,即可反推出每一薄片之熱膨脹係數。之後將所有薄片在厚度方向串聯起來,即可得到一計算整體單位格子熱膨脹係數之積分公式,並以實驗與理論相互印證。
在計算梭織物複合材料的熱膨脹係數時,設定了兩個主要的參數:纖維體積含有率和單位格子高長比。結果顯示固定纖維體積含有率時,熱膨脹係數會隨高長比的增加而增加。當單位格子高長比固定時,織物複材熱膨脹係數會隨著纖維體積含有率的增加,而有下降的趨勢。另一方面,在織物成形期間,因壓力所造成的平移現象,對整體材料熱膨脹係數的影響並不大。最後在比較三大梭織物系統的部分,當固定相同的纖維體積含有率與纖維束波動振幅時,織物複材之熱膨脹係數為平紋>斜紋>緞紋。
The fiber rigid model to calculate the thermal expansion coefficient of the woven fabric composites, and consider the thermal applied force of fiber and matrix. Further, the effects of various parameters on the thermal expansion properties of fabric composites will be investigated. This analysis method considers the arrange and crimp among all fiber tows in the unit cell, and joins thermal applied force in the model to obtain the thermal expansion coefficient of the woven fabric composites. Unit cell will be incised infinitesimal pieces, when analyzing thermal expansion coefficient of woven fabric composites. Then, suppose every piece thermal amount of deformation equivalency along the same direction. The thermal applied force of fiber and matrix were embedded analysis mode to calculate thermal expansion coefficient of every piece. At the latest, thermal expansion coefficient of all pieces are assembled in series along thickness direction. Hence, the result obtained thermal expansion coefficient amass expressions of unit cell. Furthermore, the calculated thermal expansion coefficient correlate the experimental results.
Primary, the effects of fiber volume fraction and the height / length (H/L) ration of the unit cell on the thermal expansion coefficients of plain woven composites were calculated. The results show that the thermal expansion coefficients decrease with increasing fiber volume fraction for a constant. H/L ration. On the other hand, for a constant H/L ration, the thermal expansion coefficients decrease with increasing fiber volume fraction. Furthermore, the relative shift of the neighboring laminate is observed to have very limited effect on the thermal expansion coefficient of the woven laminate. As for the comparison of the thermal expansion coefficient among those three different fabric composites, for a constant fiber volume fraction and fiber tow wavetable. Conclusion, the thermal expansion coefficient is which plain fabric composite has the highest value and the satin fabric composite yield the lowest for a constant crimp of the fiber tows.
目 錄
中文摘要I
英文摘要II
目錄III
圖目錄Ⅴ
表目錄Ⅶ
符號意義Ⅷ
第1章 前言1
1.1 引言1
1.2 文獻回顧3
1.3 研究動機5
第2章 理論7
2.1 熱膨脹係數之計算7
2.2 單位格子之應變8
2.3 纖維束之波動角度9
2.4 剛性模型計算熱膨脹係數11
2.5 基材熱膨脹係數調整15
第3章 實驗17
3.1 實驗材料17
3.2 實驗儀器18
3.3 實驗流程19
3.4 複材纖維體積含有率測試21
3.5 應變規之選擇與黏貼法22
3.6 應變規之校正23
第4章 結果與討論25
4.1 平紋織物複合材料之熱膨脹係數分析27
4.1.1各種分析理論與實驗值之比較討論28
4.1.2纖維體積含有率對材料熱膨脹係數的影響29
4.1.3單位格子高長比對材料熱膨脹係數的影響30
4.1.3.1固定纖維體積含有率時,高長比變化對熱膨脹係數之影響31
4.1.3.2纖維截面積固定時,高長比變化對熱膨脹係數和纖維體積
含有率的影響32
4.1.4 層與層之間對稱性對材料熱膨脹係數之影響34
4.2斜紋織物複合材料之熱膨脹係數分析36
4.2.1纖維體積含有率對材料熱膨脹係數的影響37
4.2.2單位格子高長比對材料熱膨脹係數的影響38
4.2.2.1固定纖維體積含有率時,高長比變化對熱膨脹係數之影響38
4.2.2.2纖維截面積固定時,高長比變化對熱膨脹係數和纖維體積
含有率的影響40
4.3緞紋織物複合材料之熱膨脹係數分析41
4.3.1纖維體積含有率對材料熱膨脹係數的影響42
4.3.2單位格子高長比對材料熱膨脹係數的影響43
4.3.2.1固定纖維體積含有率時,高長比變化對熱膨脹係數之影響43
4.3.2.2纖維截面積固定時,高長比變化對熱膨脹係數和纖維體積
含有率的影響45
4.4三種梭織物結構之熱膨脹係數比較分析47
第5章 結論49
參考文獻50
參 考 文 獻
1.Hull Derek, “An Introductionto Composite Materials,” Cambridge University Press 1981.
2.Jenn-Ming Yang, Chang-Long Ma and Tsu-Wei Chou, “Fiber Inclination Model of Three-Dimensional Textile Structural Composites,” Journal of Composite Materials, Vol. 20, No. 9, 1986, 472-484.
3.Ph. Vandeurzen, J. Ivens and Verpoest, “ A Three-Dimensional Micromechanical Analysis of Woven-Fabric Composites:Ⅱ. Elastic Analysis,” Composites Science and Technology 56 (1996) 1317-1327.
4.B. F. Sorensen, S. Sarraute, O. Jorgensen and A. Horsewell, “ Thermally Induced Delamination of Multilayers,” Acta Mater. Vol. 46. No. 8.(1998) 2603-2615.
5.Leon L. Shaw, “Thermal Residual Stress in Plates and Coatings Composed of Multi-Layered and Functionally Graded Materials,” Composites Part B, 29B (1998) 199-210.
6.Zheng Ming Huang 1, “Strength Formulae of Unidirectional Composites Including Thermal Residual Stresses,” Materials Letters 43 (2000) 36-42.
7.A. Abedian and W. Szyszkowski ,“Influence of the free Surface on the Thermal Stresses in Unidirectional Composites,” Composites Part A, 28A (1997) 573-579.
8.K. F. Rogers, L. N. Phillips, D. M. Kingston-Lee, B. Yates, M. J. Overy, J. P. Sargent, B. A. McCalla, “The Thermal Expansion of Carbon Fibre-reinforced Plastics. Part 1 The Influence of Fibre Type and Orientation,” Journal of Materials Science 12(1977)718-734.
9.B. Yates, M. J. Overy, J. P. Sargent, B. A. McCalla, M. Kingston-Lee, L. N. Phillips, K. F. Rogers, “The Thermal Expansion of Carbon Fibre-reinforced Plastics. Part 2 The Influence of Fibre Volume fraction,” Journal of Materials Science 13(1978)433-440.
10.A. Agbossou and J. Pastor.“Thermal Stress and Thermal Expansion Coefficients of n-Layered Fiber-Reinforced Composites,” Composites Science and Technology, 57 (1997)249-260.
11.Ran Y. Kim, Allan S. Crasto, Gregory A. Schoeppner,“Dimensional Stability of Composite in a Space Thermal Environment,” Composites Science and Technology, 60 (2000),2601-2608.
12.A. Dasgupta, R. K. Agarwal. and S. M. Bhandarkar, ”Three-Dimensional Modeling of Woven-Fabric Composites for Effective Thermo-Mechanical and Thermal Properties,” Composites Science and Technology,56(1996)209-223.
13.T. Vu-Khanh and B. Liu. ”Prediction of Fibre Rearrangement and Thermal Expansion Behaviour of Deformed Woven-Fabric Laminates, ”Composites Science and Technology, 53 (1995) 183-191.
14.Ping Tan, Liyong Tong, Grant P. Steven,“Micromechanics Models for Mechanical and Thermomechanical Properties of 3D Through-the-Thickness Angle Interlock Woven Composites,” 30(1999), 637-648.
15.J. Kora’ba, P. Stefanika, S. Kaveckya, P. Seboa, G. Korbb,“Thermal Expansion of Cross-ply and Woven Carbon Fibre-Copper Matrix Composites,” Composites Part A 33 (2002) 133-136.
16.Chen Zuoronga, Yu Shouwena, Feng Xiqiaoa, Meng Lub, Lin Yeb,“Evaluation of Thermo-Elastic Properties of Three-Dimensional Orthogonal Woven Composites,” Composites Part B 33 (2002) 241-251.
17.I. Glavchev , Kr. Petrova, M. Ivanova,“Determination of the Coefficient of Thermal Expansion of Epoxy Composites,” Polymer Testing 21 (2002) 177-179.
18.Ran Y. Kima, Allan S. Crastoa, Gregory A. Schoeppnerb,“Dimensional Stability of Composite in a Space Thermal Environment,” Composites Science and Technology 60 (2000) 2601-2608.
19.張誌暉,“預測梭織物複合材料之熱膨脹係數”,逢甲大學紡織工程研究所碩士論文,2002.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top