跳到主要內容

臺灣博碩士論文加值系統

(44.221.73.157) 您好!臺灣時間:2024/06/15 12:46
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:鄧泉文
論文名稱:智慧型使用者模型管理系統之設計與實作
論文名稱(外文):The Design and Implementation of An Intelligent User Modeling Management System
指導教授:許見章
學位類別:碩士
校院名稱:輔仁大學
系所名稱:資訊工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2003
畢業學年度:91
語文別:英文
論文頁數:69
中文關鍵詞:使用者模型可調適使用者介面案例式推理貝式學習網路行為樣式解釋式學習半徑式函數網路熟練度測量
外文關鍵詞:User ModeingAdaptable interfaceCase-based reasoningBayesian belief networkBehavior patternExplanation-based learningRadial basis functionProficiency metrics
相關次數:
  • 被引用被引用:0
  • 點閱點閱:185
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
本論文提出一智慧型使用模型管理系統,以建構個人化的使用者模型並應用於電子商務系統。本系統包含有兩個模組,分別為介面管理員及模型建造者。介面管理員提供了一個可調適使用者介面,提供系統使用者一客製化的模型編輯器及使用者模型樣版。它利用案例式推理提供缺乏經驗的使用者,選擇適當的編輯功能及產生使用者模型樣版,以幫助行為學習者建立使用者模型。動作監視器負責收集使用者資訊、過濾不必要動作及辨認使用者行為樣式與喜好動作。它利用互動協定收集出使用者動作;利用貝式學習網路過濾多餘和無關使用者動作;利用半徑式函數網路辨認使用者的行為模式和偏好行為。行為學習器負責填滿使用者模型內容的參數,它負責具體化使用者行為、知識、技巧、和特性等模型的內容並利用任務網路記錄使用者的行為和彼此間的關係。接著利用解釋式學習及領域的本體,建構個人化領域本體;利用熟練度測量評估使用者的經驗;利用詞頻來計算使用者的興趣及偏好。最後,模型建構器利用框架來表示使用者模型及驗證其正確性,並將此內部表示轉換至適合各種不同系統之可共享的表示方式。

This work proposes an intelligent user modeling management system for constructing the personalized user model and determining its application in electronic commerce. The system contains two modules, namely, the interface manager and the model builder. The interface manager provides an adaptable interface for the system user to customize the function of the model editor and generate the user model template. It supports different modes and interaction functions to enable the user to customize the editing environment. The case-based reasoning supports an adaptable interface enables less experience users to choose the appropriate editing functions. The mechanism then generates a user model template to enable the behavior learner to construct the user model. An action supervisor is defined as the information collector for monitoring the user operations, excluding unnecessary operations, and recognizing the behavior patterns and preferred action. The information collector uses the interaction protocol to extract user operation, the Bayesian belief network to filter out redundant and irrelevant operations, and the RBF neural networks to recognize the behavior pattern and preferred actions. The behavior learner consolidates the content of the user model. The behavior learner embodies the behavior, knowledge, skill, and character models. It uses the task network to record behavior patterns and their correlation, uses EBL and domain ontology to construct the personalized domain ontology, the proficiency metrics to evaluate user experience, the term frequency to compute favoritism, interests, and habitual behavior. Finally, the model constructor uses the frame as the internal representation method to represent user model. This module then verifies the user model and translates the internal representation into different sharable representations for different systems.

誌 謝 i
摘 要 ii
Abstract iii
Table of Contents v
List of Figures viii
List of Tables x
Chapter 1 Introduction 1
Chapter 2 User Modeling Systems 6
2.1 User Models 6
2.2 User Modeling Systems 8
Chapter 3 System Architecture 11
3.1 Interface Manager 11
3.2 Model Builder 13
Chapter 4 Interface Manager 15
4.1 Model Editor 15
4.1.1 Adaptable Interface 15
4.1.2 Model Editor 20
4.1.3 User Model Template Generation 21
4.2 Action Supervisor 25
4.2.1 User Operation Monitoring 26
4.2.2 Exclusion of Unnecessary Operations 27
4.2.3 Behavior Pattern and Preferred operation Recognition 28
Chapter 5 Model Builder 31
5.1 Behavior Learner 31
5.1.1 Behavior Model Construction 31
5.1.2 Knowledge and Skill Proficiency Evaluation 32
5.1.3 User Characteristics Collection 35
5.2 Model Constructor 36
5.2.1 User Model Representation and Verification 36
5.2.2 Model Generation and Translation 38
Chapter 6 Electronic Commerce Application 40
6.1 Model Editor 41
6.2 Model Builder 45
Chapter 7 Discussions and Conclusions 49
7.1 Summary 49
7.2 Comparison 52
7.3 Future Work 54
References 56

[Aber01a] J. Aberg, N. Shahmehri and D. Maciuszek, “User Modelling for Live Help Systems: Initial Results,” Proceedings of the 3rd ACM conference on Electronic Commerce, pp.194-197, 2001.
[Aber01b] J. Aberg, and N. Shahmehri, “The role of Human Web Assistants in E-Commerce: an Analysis and a Usability Study,” Electronic Networking Applications and Policy, vol. 10, no. 2, pp. 114-125, 2000.
[Bela01] F. Belanger, “Introduction to Electronic Business” Available at http://www.cob.vt.edu/accounting/faculty/belanger/pres/EC_intro_HTM4414.PDF, 2001
[Braj94] G. Brajnik and C. Tasso, “A Shell for Developing Non-monotonic User Modeling Systems,” International Journal of Human-Computer Studies, vol. 40, no.2, pp. 31-62, 1994.
[Brus02] P. Brusilovsky and D. W. Cooper, “Domain, Task, and User Models for an Adaptive Hypermedia Performance Support System,” Proceedings of International Conference on Intelligent User Interface (IUI-02), pp. 13-16, 2002.
[Buen01] D. Bueno and A. D. Amos, “METIORE: A Personalized Information Retrieval System,” Proceedings of the 8th International Conferences on User Modeling, pp. 168-177, 2001.
[Deit02] H. M. Deitel, P. J. Deitel, B. Duwaldt, L. K. Trees, and S. E. Santry, Web Services: A Technical Introduction, Prentice Hall, Upper Saddle River, NJ, 2002.
[Dejo86] G. Dejong and R. Mooney, “Explanation-Based Learning: An Alternative View.” Machine Learning, vol. 1, no.2, pp. 145-176
[Fini89] T. W. Finin, “GUMS: A General User Modeling Shell,” User Models in Dialog Systems, Springer, Berlin, pp. 411-430, 1989.
[Fisc01] G. Fischer, “User Modeling in Human-Computer Interaction,” User Modeling and User-Adapted Interaction, vol. 11, no. 1-2, pp 65-86, 2001.
[Luge02] G. F. Luger, Artificial Intelligence─Structures and Strategies for Complex Problem Solving, Addison-Wesley, Reading, MA, 2002
[Ham01] F. M. Ham and I. Kostamoc, Principles of Neurocoputing for Science & Engineering, McGraw Hill, Singapore, 2001
[Ishi95] K. Ishimaru, N. Harada, and K. Yamada, “User Model for Intelligent Cooperative Dialog System,” Proceedings of the International Joint Conference of the Fourth IEEE International Conference on Fuzzy Systems and the Second International Fuzzy Engineering Symposium, vol. 2 , pp. 831-836, 1995.
[Kay95] J. Kay, “The um Toolkit for Cooperative User Modeling,” User Modeling and User-Adapted Interaction, vol. 4, no. 3, pp. 149-196, 1995.
[Kita02] Y. Kitamura, T. Sakamoto and S. Tatsumi, ”A Competitive Information Recommendation System and Its Behavior,” Cooperative Information Agents VI, Springer, Berlin, pp. 138-151, 2002.
[Kobs95] A. Kobsa and W. Pohl, “The BGP-MS User Modeling System,” User Modeling and User-Adapted Interaction, vol. 4, no. 2, pp. 59-106, 1995.
[Paiv95] A. Paiva, and J. Self, “TAGUS — A User and Learner Modeling Workbench,” User Modeling and User-Adapted Interaction, vol. 4, no. 3, pp. 197-226, 1995.
[Pear88] J. Pearl, Heruistics: Intelligent Strategies for Computer Problem Solving, Addision-Wesley, Reading, MA, 1988.
[Rich99] E. Rich, “Users Are Individuals: Individualizing User Models,” International Journal of Human-Computer Studies, vol. 51, no.2, pp. 323-338, 1999.
[Seme01] G. Semeraro, S. Ferilli, N. Fanizzi and F. Abbattista, “Learning Interaction Models in a Digital Library Service,” Proceedings of the 8th International Conferences on User Modeling (UM-01), pp. 44-53, 2001.
[Schw02] D. G. Schwartz, S. Stoechlin, and E. Yilmaz, ”A Case-Based Approach to Network Intrusion Detection”, Proceedings of the Fifth International Conference on Information Fusion (IF-02), pp. 1084-1089, 2002.
[Stub96] W. A. Stubblefield and G. F. Luger, “Source Selection for Analogical Reasoning: An Empirical Approach,” Proceedings of the American Association of Artificial Intelligence (AAAI-96), vol. 1, pp. 696-702, 1996.
[Thom02] A. C. Thompson, “Evaluating a Personalized Conversational Recommendation System,” School of Computing University of Utah Unpublished Technical Note, March 2002. Available at http://www.cs.utah.edu/~cindi/papers/apa-techrep.pdf
[Virv01] M. Virvou, and M. Moundridou, “Student and Instructor Models: Two Kinds of Model and Their Interaction in an ITS Authoring Tool,” Proceedings of the 8th International Conferences on User Modeling (UM-01), pp. 158-167, 2001.
[W3c99] W3c, RFC 2616, World Wide Web Consortium, Available at http://www.w3.org/Protocols/HTTP/1.1/ rfc2616.pdf, 1999.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top